首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stability and hydrodynamic behaviors of different lattice Boltzmann models including the lattice Boltzmann equation (LBE), the differential lattice Boltzmann equation (DLBE), the interpolation-supplemented lattice Boltzmann method (ISLBM) and the Taylor series expansion- and least square-based lattice Boltzmann method (TLLBM) are studied in detail. Our work is based on the von Neumann linearized stability analysis under a uniform flow condition. The local stability and hydrodynamic (dissipation) behaviors are studied by solving the evolution operator of the linearized lattice Boltzmann equations numerically. Our investigation shows that the LBE schemes with interpolations, such as DLBE, ISLBM and TLLBM, improve the numerical stability by increasing hyper-viscosities at large wave numbers (small scales). It was found that these interpolated LBE schemes with the upwind interpolations are more stable than those with central interpolations because of much larger hyper-viscosities.  相似文献   

2.
3.
The lattice Boltzmann cellular automaton method has been successfully extended for analysis of fluid interactions with a deformable membrane or web. The hydrodynamic forces on the solid web are obtained through computation of the fluid flow stress at the moving boundary using the lattice Boltzmann method. Analysis of solid boundary deformation or vibration due to hydrodynamic force is based on Newtonian dynamics and a molecular dynamic type approach.  相似文献   

4.
Zene Horii   《Physica A》2005,350(2-4):349-378
To establish mass transport theory on nonlinear lattices, we formulate the Korteweg–deVries (KdV) equation and the Burgers equation using the flow variable representation so as to facilitate comparison with the Boltzmann equation and with the Cahn–Hilliard equation in classical statistical mechanics. We also study Toda lattice microdynamics using the Flaschka representation, and compare with the Liouville equation. Like the linear diffusion equation, the Boltzmann equation and the Liouville equation are to be solved for a distribution function, which is intrinsically probabilistic. Transport theory in linear systems is governed by the isotropic motions of the kinetic equations. In contrast, the KdV perturbation equation derived from the Toda lattice microdynamics expresses hydrodynamic mass transport. The KdV equation in hydrodynamics and the Burgers equation in thermodynamics do not involve a probability distribution function. The nonlinear lattices do not retain isotropy of the mass transport equations. In consequence, it is proposed that in the presence of hydrodynamic flows to the left, KdV wave propagation proceeds to the right. This basic property of the KdV system is extended to thermodynamics in the Burgers system. These features arise because linear systems are driven towards an equilibrium by molecular collisions, whereas the inhomogeneities of the nonlinear lattices are generated by the potential energy of interaction. Diffusion as expressed by the Burgers equation is governed not only by a chemical potential, but also by the Toda lattice potential energy.  相似文献   

5.
The concepts of local temperature and local thermal equilibrium are introduced in the context of lattice gas cellular automata (LGGAs) whose dynamics conserves energy. Green-Kubo expressions for thermal transport coefficients, in particular for the heat conductivity, are derived in a form, equivalent to those for continuous fluids. All thermal transport coefficients are evaluated in Boltzmann approximation as thermal averages of matrix elements of the inverse Boltzmann collision operator, fully analogous to the results for continuous systems, and fully model-independent. The collision operator is expressed in terms of transition probabilities between in- and out-states. Staggered diffusivities arising from spuriously conserved quantities in LGCAs are also calculated. Examples of models with either cubic or hexagonal symmetries are discussed, where particles may or may not have internal energies.  相似文献   

6.
7.
In this paper, we present the construction of the Lattice Boltzmann method equipped with the H-theorem. Based on entropy functions whose local equilibria are suitable to recover the Navier–Stokes equations in the framework of the Lattice Boltzmann method, we derive a collision integral which enables simple identification of transport coefficients, and which circumvents construction of the equilibrium. We discuss performance of this approach as compared to the standard realizations.  相似文献   

8.
A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier-Stokes equations, including contribution of chemical reaction, via the Chapman-Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed.  相似文献   

9.
We propose a consistent lattice Boltzmann equation (LBE) with baroclinic coupling between species and mixture dynamics to model the active scalar dynamics in multi-species mixtures. The proposed LBE model is directly derived from the linearized Boltzmann equations for mixtures and it has the following two distinctive features. First, it uses the multiple-relaxation-time collision model so that it has the flexibility of independent Reynolds and Schmidt numbers, and better numerical stability. Second, it satisfies the indifferentiability principle therefore leads to a set of consistent hydrodynamic equations for barycentric velocity for mixtures. The proposed LBE model is validated through simulations of decaying homogeneous isotropic turbulence in three dimensions. We simulate both the active and passive scalar dynamics in decaying turbulence for mixtures. We also compute various statistical quantities and their decay exponents in decaying turbulence. Our results agree well with existing results for both scalar dynamics and decaying turbulence.  相似文献   

10.
Exact (to all orders in Knudsen number) equations of linear hydrodynamics are derived from the Boltzmann kinetic equation with the Bhatnagar-Gross-Krook collision integral. The exact hydrodynamic equations are cast in a form which allows us to immediately prove their hyperbolicity, stability, and existence of an H theorem.  相似文献   

11.
It is proved that the eigenvalue spectrum of the linearized collision operator of Peierls' phonon-Boltzmann equation has no gap. As a consequence the usual derivation of hydrodynamic equations from a Boltzmann equation is not valid in the case of a phonon system.  相似文献   

12.
We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellians. The Maxwellians are constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.  相似文献   

13.
Density waves analogous to second sound are studied in a gas of magnons. Quasiparticle interaction is considered for both equilibrium and non equilibrium thermodynamics. The non equilibrium theory is based on a Boltzmann equation for magnon-magnon scattering. Contrary to the total energy and magnetization, (quasi)-momentum is not strictly conserved. In the hydrodynamic regime, the transport equation is reduced to a set of two coupled equations for the magnetization and the local temperature. For low temperatures these have diffusive and propagating solutions while for high temperatures, where momentum is dissipated by Umklapp processes, the solutions are only diffusive. The magnetization response function and the corresponding spectral function are discussed for various wavenumbers and temperatures.  相似文献   

14.
The influence of the use of the generalized Hermite polynomial on the Hermite-based lattice Bofiz- mann (LB) construction approach, lattice sets, the thermal weights, moments and the equilibrium distribution function (EDF) are addressed. A new moment system is proposed. The theoretical possibility to obtain a unique high-order Hermite-based singel relaxation time LB model capable to exactly inatch some first hydrodynamic inoments thermally i) on-Cartesian lattice, ii) with thermal weights in the EDF, iii) whilst the highest possible hydrodynamic moments that are exactly reatched are obtained with the shortest on-Cartesian lattiee sets with some fixed real-valued temperatures, is also analyzed.  相似文献   

15.
Yali Duan  Linghua Kong 《Physica A》2012,391(3):625-632
In this paper we develop a lattice Boltzmann model for the generalized Burgers-Huxley equation (GBHE). By choosing the proper time and space scales and applying the Chapman-Enskog expansion, the governing equation is recovered correctly from the lattice Boltzmann equation, and the local equilibrium distribution functions are obtained. Excellent agreement with the exact solution is observed, and better numerical accuracy is obtained than the available numerical result. The results indicate the present model is satisfactory and efficient. The method can also be applied to the generalized Burgers-Fisher equation and be extended to multidimensional cases.  相似文献   

16.
Irrespective of the nature of the modeled conservation laws, we establish first the microscopic interface continuity conditions for Lattice Boltzmann (LB) multiple-relaxation time, link-wise collision operators with discontinuous components (equilibrium functions and/or relaxation parameters). Effective macroscopic continuity conditions are derived for a planar implicit interface between two immiscible fluids, described by the simple two phase hydrodynamic model, and for an implicit interface boundary between two heterogeneous and anisotropic, variably saturated soils, described by Richard’s equation. Comparing the effective macroscopic conditions to the physical ones, we show that the range of the accessible parameters is restricted, e.g. a variation of fluid densities or a heterogeneity of the anisotropic soil properties. When the interface is explicitly tracked, the interface collision components are derived from the leading order continuity conditions. Among particular interface solutions, a harmonic mean value is found to be an exact LB solution, both for the interface kinematic viscosity and for the interface vertical hydraulic conductivity function. We construct simple problems with the explicit and implicit interfaces, matched exactly by the LB hydrodynamic and/or advection-diffusion schemes with the aid of special solutions for free collision parameters.  相似文献   

17.
We first consider the Boltzmann equation with a collision kernel such that all kinematically possible collisions are run at equal rates. This is the simplest Boltzmann equation having the compressible Euler equations as a scaling limit. For it we prove a stability result for theH-theorem which says that when the entropy production is small, the solution of the spatially homogeneous Boltzmann equation is necessarily close to equilibrium in the entropie sense, and therefore strongL 1 sense. We use this to prove that solutions to the spatially homogeneous Boltzmann equation converge to equilibrium in the entropie sense with a rate of convergence which is uniform in the initial condition for all initial conditions belonging to certain natural regularity classes. Every initial condition with finite entropy andp th velocity moment for some p>2 belongs to such a class. We then extend these results by a simple monotonicity argument to the case where the collision rate is uniformly bounded below, which covers a wide class of slightly modified physical collision kernels. These results are the basis of a study of the relation between scaling limits of solutions of the Boltzmann equation and hydrodynamics which will be developed in subsequent papers; the program is described here.On leave from School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.On leave from C.F.M.C. and Departamento de Matemática da Faculdade de Ciencias de Lisboa, 1700 Lisboa codex, Portugal.  相似文献   

18.
We propose a discrete Boltzmann model for microfluidics based on the Boltzmann equation with external forces using a single relaxation time collision model. Considering the electrostatic interactions in microfluidics systems, we introduce an equilibrium distribution function that differs from the Maxwell-Boltzmann distribution by an exponential factor to represent the action of an external force field. A statistical mechanical approach is applied to derive the equivalent external acceleration force exerting on the lattice particles based on a mean-field approximation, resulting from the electro-static potential energy and intermolecular potential energy between fluid-fluid and fluid-substrate interactions.  相似文献   

19.
A correlation function approach is developed to treat non-equilibrium phenomena of quantum crystals at low frequency and long wavelength within the renormalized harmonic approximation (RHA). The derivation of the transport equations is carried out by studying the hierarchy of equations of motion for the retarded Green's functions of a pure, nonprimitive, nonionic, anharmonic lattice. Using a factorization technique to take into account the most important terms due to the particle fluctuations and the leading contributions to the hydrodynamic singularities of the phonon self-energy, we find a differential equation for the displacement field and a generalized transport equation for the phonon gas. The microscopic RHA expressions for the local temperature, the local heat density and the energy current are derived; the quasiparticle parameters (elastic constants, generalized Grüneisen parameters, quasiparticle interaction) entering the equations of motion are shown to be consistent with the RHA. In the hydrodynamic regime the general equations are reduced to two coupled differential equations for the lattice deformations and for the local temperature. Then only the displacement-displacement, the displacement-energy density and the energy density-energy density correlation functions show macroscopic fluctuations; for these functions thermodynamical sum-rules are derived.  相似文献   

20.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号