首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La0.5Bi0.5MnO3 ceramics with a single phase were prepared by a solid-state reaction method, and their dielectric properties were characterized. Two dielectric relaxations with a giant dielectric constant were identified in the temperature range from 125 to 350 K. The electron hopping between Mn3+ and Mn4+ was found to be the origin of the dielectric relaxation at low temperatures (125–200 K) with an activation energy of 0.18 eV. The high temperature (200–350 K) dielectric relaxation can be attributed to the conduction.  相似文献   

2.
Room-temperature ferromagnetism was observed in Zn0.9Co0.1O nanorods with diameters and lengths of ∼100–200 nm and ∼200–1000 nm, respectively. Nanorods were synthesized by a simple sol–gel method using metal acetylacetonate powders of Zn and Co and poly(vinyl alcohol) gel. The XRD, FT-IR and SAED analyses indicated that the nanorods calcined at 873–1073 K have the pure ZnO wurtzite structure without any significant change in the structure affected by Co substitution. Optical absorption measurements showed absorption bands indicating the presence of Co2+ in substitution of Zn2+. The specific magnetization of the nanorods appeared to increase with a decrease in the lattice constant c of the wurtzite unit cell with the highest value being at 873 K calcination temperature. This magnetic behavior is similar to that of Zn0.9Co0.1O nanoparticles prepared by polymerizable precursor method. We suggest that this behavior might be related to hexagonal c-axis being favorable direction of magnetization in Co-doped ZnO and the 873 K (energy of 75 meV) being close to the exciton/donor binding energy of ZnO.  相似文献   

3.
Transport and field-emission properties of as-synthesized CNx and BNCx (x<0.1) multi-walled nanotubes were compared in detail. Individual ropes made of these nanotubes and macrofilms of those were tested. Before measurements, the nanotubes were thoroughly characterized using high-resolution and energy-filtered electron microscopy, electron diffraction and electron-energy-loss spectroscopy. Individual ropes composed of dozens of CNx nanotubes displayed well-defined metallic behavior and low resistivities of ∼10–100 kΩ or less at room temperature, whereas those made of BNCx nanotubes exhibited semiconducting properties and high resistivities of ∼50–300 MΩ. Both types of ropes revealed good field-emission properties with emitting currents per rope reaching ∼4 μA(CNx) and ∼2 μA (BNCx), albeit the latter ropes se- verely deteriorated during the field emission. Macrofilms made of randomly oriented CNx or BNCx nanotubes displayed low and similar turn-on fields of ∼2–3 V/μm. 3 mA/cm2 (BNCx) and 5.5 mA/cm2 (CNx) current densities were reached at 5.5 V/μm macroscopic fields. At a current density of 0.2–0.4 mA/cm2 both types of compound nanotubes exhibited equally good emission stability over tens of minutes; by contrast, on increasing the current density to 0.2–0.4 A/cm2, only CNx films continued to emit steadily, while the field emission from BNCx nanotube films was prone to fast degradation within several tens of seconds, likely due to arcing and/or resistive heating. Received: 29 October 2002 / Accepted: 1 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

4.
The α-decay energy and halflife of 195mAt were determined to be 6960±20 keV and 385+69 −51 ms respectively, on the basis of genetic correlations in the 169Tm(36Ar, α6n)195At reaction, while those of 195gAt measured simultaneously were 7105±30 keV and 146+21 −17 ms respectively, reconfirming the previously reported values. A new isotope 199Fr was also produced and identified in the same way in the 169Tm(36Ar, 6n)199Fr reaction, yielding Eα= 7655±40 keV and T1/2= 12+10 −4 ms. Received: 26 March 1999  相似文献   

5.
Single-wall carbon nanotubes (SWNTs) were synthesized by the irradiation of 20-ms CO2 laser pulses onto a graphite–Co/Ni target at room temperature. We investigated the effect of laser power density (10–150 kW/cm2) and ambient Ar gas pressure (150–760 Torr) on the abundance of SWNTs with lengths of up to about 200 nm in soot-like carbonaceous deposits. For a constant power density (30 kW/cm2), depending on the Ar gas pressure, SWNTs with diameters of 1.2–1.4 nm were synthesized. Expansion behavior and temperature-fall rates of clusters and/or particles in laser plumes were also analyzed by high-speed video imaging and temporally and spatially resolved emission spectroscopy. The temperature-fall rates were estimated to be 171–427 K/ms. The SWNT growth on the time scale of a few milliseconds appeared to be related to some features of condensing clusters and/or particles, including resident densities, collision frequencies and temperatures. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

6.
A preliminary study of the diamagnetic (μd) and the paramagnetic (Mu T ) states in a synthetic 13C diamond has been performed using the Transverse Field Muon Spin Rotation method. This system could be used to verify the quantum diffusion behaviour observed before, however, with a more reliable extraction of the hopping rate. The results were obtained in an applied magnetic field of 7.5 mT and at sample temperatures of 10 K, 100 K and 200 K. The prompt fraction, f, of the μd state remains constant at 22(5)% in the range 10–200 K; that of the Mu T state increases from 53(10)% at 10 K to 78(10)% at 200 K. The fractions of the two states add to 100% at 200 K, suggesting non-population of the bond-centred state, MuBC, which is often observed in other diamond samples. The μd state has a spin relaxation rate of 0.20(5) μs−1, in contrast to the zero value obtained in type II diamond samples. This indicates appreciable interaction of the μd state with the 13C atoms. The Mu T state has a large spin relaxation rate ranging from 3.0(5) μs−1 at 10 K to 7.0(5) μs−1 at 200 K, consistent with values obtained in diamond samples with defects. This work is part of ongoing studies of muon/muonium-defect interactions in diamonds. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

7.
Polycrystalline Pb1−x Sr x (Fe0.012Ti0.988)O3 (0.2≤x≤0.4) (PSFT) thin films have been grown on fused quartz substrates by metallo-organic decomposition technique. The grown films were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), source meter and UV–Vis–NIR spectrophotometer to determine the structural, microstructural, dc resistivity and optical properties. The XRD pattern confirmed that the PSFT films has distorted tetragonal single phase, which close to cubic at higher Sr concentration. AFM analysis revealed that the grains size reduces with increasing Sr concentration and their average values lies in the range of 26–9 nm. The higher values of dc resistivity of PSFT nano grains indicate that the transmission of light occurs within these grains up to short wavelength. The refractive index and the extinction coefficient were determined from the optical transmission spectrum in the wavelength range of 200–1100 nm and compared with that theoretically calculated, when fitted to a single oscillator model. The values of optical band gap were determined from Tauc’s extrapolation fitting and suggests that the transformation of electrons during transmission of light through local states within Fermi gap.  相似文献   

8.
We have investigated the role of the grain boundary on the resistive magnetodielectric property of polycrystalline γ-Fe2O3 through impedance spectroscopy measurements. Depending on the sample preparation temperature, the dielectric constant of γ-Fe2O3 is significantly different especially at low frequencies (<104 Hz) and high temperatures (>200 K). The value of the magnetodielectric effect at a specific frequency and the resonance frequency for the maximized magnetodielectric effect are different, although polycrystalline γ-Fe2O3 samples show a quite similar magnetoresistance. Through the experimentally obtained resistance ratio between the grain and the grain boundary, we can reproduce the magnetodielectric curves based on the Maxwell–Wagner model and the measured magnetoresistance.  相似文献   

9.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

10.
Epitaxial orthorhombic YMnO3(YMO) thin films on (001) Nb:SrTiO3(NSTO) substrates were prepared by pulsed laser deposition. The weak ferromagnetism at low temperature, probably ascribed to the stretched Mn-spin configuration along [010] direction, was identified. The dielectric anomaly at the spin–glass freezing point indicates clearly a spin–phonon (magnetoelectric) coupling which can be modulated by electric field. The as-prepared YMO/NSTO heterostructure exhibits significant current–voltage (IV) rectifying effect over a broad temperature range.  相似文献   

11.
The level structures populated in alpha decay of all odd-Z-even-N nuclei withZ=(83–93) andN=(126–142) up to 500 keV are presented. More data on the 4n+3 nuclear sequences are given from215Bi to235Np. Particular emphasis is placed on the hindrance factors to alpha decay in interpreting the level structures in term of the shell model, the octupole-quadrupole model and the Nilsson model. The level structures and the hindrance factors go through transition region in which mixtures of the properties of two different nuclear models are appropriate. These transition regions represent a challenge to nuclear theorists to develop more all-encompassing nuclear models.  相似文献   

12.
We have studied the effect of lead dopant on the optical absorption, photoluminescence, and x-ray luminescence spectra, and the scintillation characteristics of CdI2 at room temperature. The crystals for the study were grown by the Stockbarger-Bridgman method. Activation of CdI2 from the melt by the compound PbI2 leads to the appearance in the absorption spectra in the near-edge region of an activator band at 395–405 nm, which is interpreted as an A band connected with electronic transitions from the 1S0 state to the 3P1 levels in the Pb2+ ion. For x-ray excitation, CdI2:Pb2+ crystals with optimal dopant concentration (∼1.0 mol%) are characterized by a light yield with maximum in the 570–580 nm region that is an order of magnitude higher than for CdI2 crystals in the 490–500 nm band. For α excitation, the radioluminescence kinetics for cadmium iodide is characterized by a very short (∼0.3 nsec) rise time and fast decay of luminescence, with τ1 ≈ 4 nsec and τ2 = 10–76 nsec. Depending on the conditions under which the crystals were obtained, the fast component fraction is 95%–99%. The crystal is characterized by a similar scintillation pulse in the case of excitation by x-ray pulses. The radioluminescence pulse shape for CdI2:Pb in the decay stage is predominantly exponential, with luminescence decay time constants τ1 ≈ 10 nsec and τ2 = 200–250 nsec. This system is characterized by low afterglow, at the level for the Bi4G3O12 scintillator. We have demonstrated the feasibility of using CdI2:Pb as a scintillator for detecting α particles. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 825–830, November–December, 2008.  相似文献   

13.
A PACIS (pulsed arc cluster-ion source) developed for high average cluster-ion currents is presented. The performance of the PACIS at different operational modes is described, and the suitability for cluster-deposition experiments is discussed in comparison with other cluster-ion sources. Maximum currents of mass-selected cluster ions of 3–6 nA of small Sin - (n=4–10) clusters and 0.3–0.5 nA of large Aln +/- (n=20–70) clusters are achieved. The mass-selected cluster ions are soft-landed on a substrate at residual kinetic energies lower than 1 eV/atom, and the samples are characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. First results on the soft landing of “magic” Si4 - clusters on graphite are presented. Received: 30 May 2001 / Accepted: 14 June 2001 / Published online: 2 October 2001  相似文献   

14.
An experimental analysis is presented to correlate the secondary dendrite arm spacing λ 2 and dendrite tip radius R with growth rate V and Mg content C 0-Mg of Al–Cu–Mg ternary alloys. Under constant temperature gradient G (4.84±0.13 K mm−1), a series of directional solidification experiments were performed at five different growth rates V (16.7–83.3 μm/s) and five different Mg contents C 0-Mg in Al–5 wt.% Cu–(0.5–5) wt.% Mg alloys. Solid–liquid interface was investigated from the longitudinal sections of the quenched samples, and λ 2 and R were measured on the dendrite tips. The dependencies of λ 2 and R on V and C 0-Mg were determined. The experimental results showed that the values of λ 2 and R decrease as V and C 0-Mg increase at a constant G. The present exponent values related to V are found to be slightly lower than the values of the theoretical models and previous experimental works; however, C 0-Mg exponent values are found to be much lower than the theoretical models and previous experimental works. The ratio of the secondary dendrite arm spacing to the dendrite tip radius is 2.09±0.15, in good agreement with the scaling law. At a constant C 0-Mg, the values of VR 2 were found to slightly increase with the ascending V. However, as C 0-Mg increases, the values of VR 2 decrease.  相似文献   

15.
We have measured the far-infrared reflectivity spectra of the sodium vanadium oxide η-Na1.3V2O5 polycrystals in the wide temperature (80–300 K) and frequency (150–1500 cm−1) range. Appearance of new phonon oscillators, phonon oscillator mode splitting and step-like shift of TO and LO frequencies at low temperatures are correlated with the charge-ordering phase transition, which takes place at about 120 K in this vanadium oxide.  相似文献   

16.
Self-assembly pyrolytic routes to large arrays (<2.5 cm2) of aligned CNx nanotubes (15–80 nm OD and <100 μm in length) are presented. The method involves the thermolysis of ferrocene/melamine mixtures (5:95) at 900–1000 °C in the presence of Ar. Electron energy loss spectroscopy (EELS) reveals that the N content varies from 2–10%, and can be bonded to C in two different fashions (double-bonded and triple-bonded nitrogen). The electronic densities of states (DOS) of these CNx nanotubes, using scanning tunneling spectroscopy (STS), are presented. The doped nanotubes exhibit strong features in the conduction band close to the Fermi level (0.18 eV). Using tight-binding and ab initio calculations, we confirm that pyridine-like (double-bonded) N is responsible for introducing donor states close to the Fermi Level. These electron-rich structures are the first example of n-type nanotubes. Finally, it will be shown that moderate electron irradiation at 700–800 °C is capable of coalescing single-walled nanotubes (SWNTs). The process has also been studied using tight-binding molecular dynamics (TBMD). Vacancies induce the coalescence via a zipper-like mechanism, which has also been observed experimentally. These vacancies trigger the organization of atoms on the tube lattices within adjacent tubes. These results pave the way to the fabrication of nanotube heterojunctions, robust composites, contacts, nanocircuits and strong 3D composites using N-doped tubes as well as SWNTs. Received: 10 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

17.
This paper reports on the electrochemical properties and chemical stability of a recently developed Ca2+ and Sm3+-doped oxide ion conducting electrolyte, Ce0.85Ca0.05Sm0.1O1.9 (CCS), employed in an intermediate temperature solid oxide fuel cell (IT-SOFC) using conventional Sm0.5Sr0.5CoO3 (SSC) and La0.8Sr0.2MnO3 (LSM) cathodes in air at elevated temperatures. The materials were prepared by conventional solid-state reactions using their corresponding metal oxides and salts in the temperature range of 1,200–1,450 °C in air. Powder X-ray diffraction (PXRD) and impedance spectroscopy were employed for phase formation, chemical compatibility, and electrochemical characterization. PXRD studies on 1:1 weight ratio of heat-treated (1,000 °C for 3 days) mixtures of SSC or LSM and CCS revealed the presence of fluorite-type and perovskite-like phases. The area-specific resistance (ASR) value in air was lower for SSC cathodes (4.3–0.15 Ω cm2) compared to those of LSM (407–11 Ω cm2) over the investigated temperature range of 600–800 °C. As expected, a significant increase in ASR was observed in Ar as compared to air.  相似文献   

18.
19.
The field emission characteristics of a single micro-bundle of single-walled carbon nanotubes (SWCNTs) were investigated using field emission microscopy (FEM). Fowler–Nordheim plots revealed that the work function of the SWCNTs was reduced with increasing heating temperature, and reached a minimum value around 1000 °C, assuming that the β factor was constant during the heating process. Field emission patterns also demonstrated fine structures that were believed to be images of the cap of a SWCNT, which was in a clean state. The radius of the SWCNT micro-bundle was measured by transmission electron microscopy (TEM), and the β factor was calculated using two empirical formulae. Then, the work function of the SWCNT was determined from the slope, K, of its Fowler–Nordheim plot. The work function values were Φ1=4.76 eV and Φ2=4.88 eV, respectively. Received: 26 October 2001 / Revised version: 19 February 2002 / Published online: 6 June 2002  相似文献   

20.
New neutron-deficient isotopes 188,189Po have been produced in the complete fusion reaction of 52Cr ions with a 142Nd target at the velocity filter SHIP. The evaporation residues were separated in-flight and subsequently identified on the basis of α-γ and α-conversion electron coincidence measurements and of α-α position and time correlations. In 189Po a ground state to ground state α decay with Eα1= 7540(20) keV, T1/2= 5(1) ms and two fine structure α-decays at Eα2= 7264(15) keV and Eα3= 7316(15) keV have been observed. In 188Po (T1/2= 400+200 −150μs) a ground state to ground state α decay at Eα= 7915(25) keV and a fine structure α decay at Eα= 7350(40) keV have been found. Improved data on the α-decay of 189Bi were obtained. Received: 15 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号