首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the structure and the formation energy of the pentagon–heptagon pairs (5775) defects of BN nanotubes using a molecular-mechanics method. For (n, 0) BN nanotubes, the homoelemental bonds of the 5775 defect may be located nearly either parallel or perpendicularly in the direction of tube axis. The former is energetically favored and strongly affects the reduction of the strain with decreasing radius. The formation energy of the 5775 defect, which increases with increasing radius, is lower than that of the tetragon–octagon pairs (4884). The 5775 defect of BN nanotubes is structurally and energetically stable, as compared to the 4884 defect.  相似文献   

2.
Via the example of a (5, 5) boron-nitrogen armchair nanotube, the influence of isoelectronic substitutional impurities on the electronic structure of BN nanotubes has been investigated with the use of linear augmented cylindrical waves. The treatment is based on the local density approximation and the muffin-tin approximation for the electron potential. In this method, the electronic spectrum of a system is governed by the free motion of electrons in the interatomic space between cylindrical barriers and the electron scattering on atomic centers. It has been found that the substitution of one atom of N by P leads to the splitting of all twofold degenerate bands by 0.2 eV on average, a decrease in the energy gap from 3.5 to 2.8 eV, the separation of the s(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity π(P) and π*(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of an As atom on the electronic structure of (5, 5) BN nanotubes is qualitatively similar to the case of phosphorus, but the energy gap is smaller by 0.5 eV. The optical gap in the nanotubes is closed due to the effect of the Sb atom impurity. A substitution of one B atom by an Al atom results in the strong perturbation of the band structure and the energy gap in this case is only 1.6 eV in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. In the latter case, the energy gap is 2.9 eV. The above effects can be detected by the optical and photoelectron spectroscopy methods, as well as by measuring the electrical properties of the nanotubes. They can be used to create electronic devices based on boron-nitrogen nanotubes.  相似文献   

3.
Behavior of CO adsorption on the surface of BN, AlN, BP, and AlP nanotubes was investigated using density functional theory calculations, by means of B3LYP and B97D functionals. It was found that energetic feasibility of this process depends on several factors including LUMO energy level of tubes, electron density, and length of the surrounding bonds of adsorbing atoms plus their hybridization. These factors compete against each other to specify the adsorption behavior of the tubes. Frontier molecular orbital theory (FMO) and structural analyses show that high energy level of LUMO and short bond lengths of the tube surfaces prevent the adsorption of CO on BN nanotubes. The results suggest that the AlN nanotubes are energetically the most favorable cases toward the CO adsorption. It was found that B97D functional changes the absolute energy values of B3LYP results, but it doesn't change their relative-order of magnitudes.  相似文献   

4.
A new class of boron-nitrogen (BN) nanotubes composed of tetragons, pentagons, hexagons, heptagons, and octagons is considered. By analogy with carbon nanotubes of the same topological structure, these nanotubes were called Haeckelites. The geometry, energetics, and electronic properties were studied in detail for two regular mutual arrangements of the polygons. It was found that Haeckelite nanotubes are dielectrics with the energy gap Eg = 3.24–4.09 eV. As the nanotube diameter increases, the energy gap Eg decreases, approaching the value for the corresponding planar Haeckelite layer. The ground-state energy of the Haeckelite BN nanotubes is 0.3 eV/atom higher than that of well-known hexagonal BN nanotubes.  相似文献   

5.
A density functional theory (DFT) study was performed on representative model of zigzag boron nitride nanotubes (BNNTs) with equivalent ends. Two models of (6,0) BNNTs were considered in the calculations in which a belt composed of carbon atoms was substituted instead of boron and nitrogen atoms in the middle of the nanotube. Hence, model 1 was created with two equivalent B-ends and model 2 was created with two equivalent N-ends. The optimization process and also the calculated electric field gradient (EFG) tensors in two models of BNNT remarkably revealed that the electronic structure properties of those nuclei located at the end of nanotube are duplicated in the considered models of BNNTs. The calculations were performed at the level BLYP method and 6-31G* standard basis set using GAUSSIAN 98 package of program.  相似文献   

6.
A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.  相似文献   

7.
利用密度泛函理论(DFT),对氮化硼(BN)管状团簇的几何结构、稳定性和电子性质进行了研究.选取合适的BN结构单元作为结构生长基元,采用逐层生长的方式计算得到有限长度、不同截面尺寸的稳定管状团簇.结构中B-N交替排列,结构组成中的四元环和六元环数目均符合一般表达式.计算结果表明,通过适当组装管状团簇以及碳原子掺杂,可以制备出带隙可调的单壁氮化硼纳米管.  相似文献   

8.
黄阳  岳双林  顾长志  C.C.Tang  Y.Bando  F.F.Xu  D.Golberg 《物理》2005,34(11):791-792
利用一种新颖的催化生长方法,在生长BN纳米管的过程中直接引入F原子,获得了均匀F掺杂的BN纳米管.高分辨透射电子显微镜研究表明,构成BN纳米管的六元环由于F掺杂而被严重扭曲,纳米管壁由一些高度卷曲的连续片层构成.电学性质测量表明,相对于无掺杂的BN纳米管而言,F掺杂BN纳米管的电导显著增加.  相似文献   

9.
The tight-binding method has been used to calculate the density of states and X-ray photoelectron spectra of valence electrons in BN and SiC cubic crystals. It is shown that s- and p-states of atoms of various components contribute differently to the spectrum.  相似文献   

10.
We investigate the electronic transport properties of silicon carbide nanotubes (SiCNT) in presence of both boron (B) and nitrogen (N) impurities. The results show that co-doping BN impurities suppresses the important negative differential resistance (NDR) property. NDR suppression is attributed to the introduction of new electronic states near the Fermi level followed by weak orbital localization. BN co-doping results in exponential current-voltage (I-V) characteristics which is in contrast to linear I-V characteristics for individual boron and nitrogen doped SiCNTs. HOMO has no contribution from B impurity, whereas, LUMO has contribution from N impurity at low and high bias.  相似文献   

11.
Impurity effects on the spin-polarized transport through armchair carbon nanotubes contacted by ferromagnetic leads are investigated theoretically. The length of the nanotube can cause on-resonance and off-resonance behaviors of the spin-coherent transport. The impurity suppresses the conductance for the on-resonance case, while it enhances the conductance for the off-resonance one. With increasing impurity strength, the tunnel magnetoresistance exhibits a maximum or minimum value for the on-resonance or off-resonance case, respectively.  相似文献   

12.
Nogueira  R.N.  Petrilli  H.M. 《Hyperfine Interactions》1999,120(1-8):131-135
The currently accepted measured value for the hyperfine field at a Co impurity in Mo hosts is -2.6 T. Contrary to this value, in a previous work we have calculated the Fermi contact contribution to the hyperfine field at an isolated Co impurity in Mo hosts using the RS-LMTO-ASA scheme and we have found the value -8.9 T. In order to investigate if this discrepancy is due to the formation of small Co clusters in the measured sample, here we study, theoretically, the behaviour of local magnetic moments and hyperfine fields in three systems, representing different local configurations of Co atoms in Mo hosts: Co sites at Co dimmers; Co with a nearest neighbour vacancy; and a 9 Co atoms cluster. In all cases we use the RS-LMTO-ASA scheme. Our results suggest that the hyperfine fields at Co atoms in Mo can be very sensitive to the homogeneity of the alloy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Exciton effects are studied in single-wall boron-nitride nanotubes. The Coulomb interaction dependence of the band gap, the optical gap, and the binding energy of excitons are discussed. The optical gap of the (5,0) nanotube is about 6 eV at the on-site interaction U=2t with the hopping integral t=1.1 eV. The binding energy of the exciton is 0.50 eV for these parameters. This energy agrees well with that of other theoretical investigations. We find that the energy gap and the binding energy are almost independent of the geometries of nanotubes. This novel property is in contrast with that of the carbon nanotubes, which show metallic and semiconducting properties depending on the chiralities.  相似文献   

14.
The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications.  相似文献   

15.
采用基于密度泛函理论的第一性原理计算研究了电场对BN纳米管的电子结构的影响.首先对在不同电场强度下的纳米管几何结构进行了优化,可以看出纳米管沿轴方向层间距出现了不规则的变化.电子能带结构显示,在电场作用下,zigzag型和armchair型两种结构纳米管的能带向低能方向移动,并且导致纳米管的带隙有显著的减小.电场使得armchair型纳米管的带隙发生了从间接带隙向直接带隙的转变.在电场作用下,纳米管的两端态密度呈现出明显的差异,正负电荷沿轴向出现了沿轴向的空间分离,Mulliken电荷分布图揭示出最高占据轨道和最低未占据轨道分居在纳米管的两端.  相似文献   

16.
We investigated BN nanotubes with two carbon substitutions for one boron atom and one nitrogen atom based on density functional theory (DFT) with local spin density approximation (LSDA). When the two carbon dopants are separated without C-C bond formation, we found that the injected carriers are spin polarized, although there is no net spin in the neutral systems. Here we call the material as ‘spin polarizer’ which can polarize the carriers passing through.  相似文献   

17.
18.
基于密度泛函第一性原理研究了金属原子Ti在原始、单空位缺陷(SV)、Stone-Wales(SW)缺陷碳纳米管内外的吸附情况.我们的计算结果表明金属Ti原子在缺陷碳纳米管内外结合能的排列顺序为:SVSW-zSW-xpristine(外吸附),SVSW-xSW-zpristine(内吸附).同时,我们通过吸附结构、电子密度和态密度等分析了Ti原子与碳纳米管的作用机制.其中,SV缺陷碳纳米管由于失去一个碳原子而形成了的三个悬键具有很强的结合能力,金属原子Ti在SV缺陷碳纳米管内外的吸附能力都是最强的.对于SW缺陷的碳纳米管,由于缺陷的位置不同,对于金属原子Ti内外吸附的能力也是不同的.因此,缺陷的存在能调节碳纳米管载体对Ti原子的吸附性能.  相似文献   

19.
《Physics letters. A》2006,360(2):317-322
Impurity effects on the photon-assisted spin-polarized transport through armchair carbon nanotubes connected with ferromagnetic leads are investigated theoretically. The impurity induces one resonant state whose position depends on the impurity strength, which can break the electron–hole symmetry. Whether the impurity suppresses or enhances the spin-coherent current depends on the nanotube length. When the microwave fields are applied on the nanotube, additional small side peaks caused by the photon-assisted tunneling are found. With increasing the impurity strength, one new current peak appears under the influence of both the microwave fields and the impurity.  相似文献   

20.
The electronic structure of segmented nanotubes composed of the alternating layers of (5,5) and (9,0) BN and SiC nanotubes in armchair and zigzag configurations, which differed in the orientation of the chemical bonds in the segments and the nature of the bonds (Si-N and B-C or Si-B and N-C) at the boundaries of BN and SiC regions, has been calculated using the linearized augmented cylindrical wave method. The calculations have been performed using the local density functional and the muffin-tin approximation for the electronic potential. It has been found that depending on the bonds at the segment boundaries, the (5,5) BN/SiC nanotubes are semiconductors with the energy gap E g of 1 to 3 eV, whereas the (9,0) BN/SiC nanotubes exhibited a metal, semimetal, or semiconductor (E g ~ 1 eV) type of band structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号