首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

2.
Shi Z  Li G  Zhang D  Hua J  Feng S 《Inorganic chemistry》2003,42(7):2357-2361
A novel vanadium(IV) phosphite, (VO)(4)(4,4'-bpy)(2)(HPO(3))(4), was hydrothermally synthesized and characterized by single-crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a = 35.970(3) A, b = 15.9400(13) A, c = 10.7681(7) A, beta = 101.073(4) degrees, and Z = 8 with R(1) = 0.0482. The structure of the compound consists of trigonal bipyramidal [VO(4)N] and pseudopyramidal [HPO(3)] blocks, which are connected by corner-sharing, to form vanadium phosphite layers in the bc plane. These layers are further linked through 4,4'-bpy pillars, generating a 3D framework. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

3.
A rational approach to heterometallic cluster formation is described that uses incommensurate symmetry requirements at two different metals to control the stoichiometry of the assembly. Critical to this strategy is the proper design and synthesis of hybrid ligands with coordination sites selective toward each metal. The phosphino-catechol ligand 4-(diphenylphosphino)benzene-1,2-diol (H(2)L) possesses both hard catecholate and soft phosphine donor sites and serves such a role, using soft (C(2)-symmetric) and hard (C(3)-symmetric) metal centers. The ML(3) catecholate complexes (M = Fe(III), Ga(III), Ti(IV), Sn(IV)) have been prepared and characterized as C(3)-symmetry precursors for the stepwise assembly (aufbau) of heterometallic clusters. While the single-crystal X-ray structure of the Cs(2)[TiL(3)] salt shows a C(1) mer-configuration in the solid -state, room-temperature solution NMR data of this and related complexes are consistent with either exclusive formation of the C(3)-fac-isomer with all PPh(2) donor sites syn to each other or facile fac/mer isomerization. Coordination of these [ML(3)](2)(-) (M = Ti(IV), Sn(IV)) metallaligands via their soft P donor sites to C(2)-symmetric PdBr(2) units gives exclusively pentametallic [M(2)Pd(3)Br(6)L(6)](4)(-) (M = Ti, Sn) clusters. These clusters have been fully characterized by spectral and X-ray structural data as C(3h) mesocates with Cs(+) or protonated 1,4-diazabicyclo[2.2.2]octane (DABCO.H(+)) cations incorporated into deep molecular clefts. Exclusive formation of this type of supramolecular species is sensitive to the nature of the counterions. Alkali cations such as K(+), Rb(+), and Cs(+) give high-yield formation of the respective clusters while NEt(3)H(+) and NMe(4)(+) yield none of the desired products. Extension of the aufbau assembly to produce related [M(2)Pd(3)Cl(6)L(6)](4)(-), [M(2)Pd(3)I(6)L(6)](4)(-), and [M(2)Cr(3)(CO)(12)L(6)](4)(-) (M = Ti, Sn) clusters has also been realized. In addition to this aufbau approach, self-assembly of several of these [M(2)Pd(3)Br(6)L(6)](4)(-) clusters from all eleven components (two M(IV), three PdBr(2), six H(2)L) was also accomplished under appropriate reaction conditions.  相似文献   

4.
The synthesis, X-ray structures, and magnetic behavior of two new, three-dimensional compounds [W(IV)[(mu-CN)(4)Co(II)(H(2)O)(2)](2).4H(2)O](n) (1) and [[W(V)(CN)(2)](2)[(mu-CN)(4)Co(II)(H(2)O)(2)](3).4H(2)O](n) (2) are presented. Compound 1 crystallizes in the tetragonal system, space group I4/m with cell constants a = b = 11.710(3) A, c = 13.003(2) A, and Z = 4, whereas 2 crystallizes in the orthorhombic system, space group Cmca with cell constants a = 13.543(5) A, b = 16.054(6) A, c = 15.6301(9) A, and Z = 4. The structure of 1 shows alternating eight-coordinated W(IV) and six-coordinated Co(II) ions bridged by single cyanides in a three-dimensional network. The geometry of each [W(IV)(CN)(8)](4-) entity in 1 is close to a square antiprism. Its eight cyanide groups are coordinated to Co(II) ions which have two coordinated water molecules in trans position. The structure of 2 consists of alternating eight-coordinated W(V) and six-coordinated Co(II) ions linked by single cyanide bridges in a three-dimensional network. Each [W(V)(CN)(8)](3-) unit shows a geometry close to a square antiprism. Only six of its eight cyanide groups are coordinated to Co(II) ions while the other two are terminal. The Co(II) ion in 2 has the same CoN(4)O(2) environment as in 1. The magnetic behavior of 1 is that of magnetically isolated high spin Co(II) ions (S(Co) = 3/2), bridged by the diamagnetic [W(IV)(CN)(8)](3-) units (S(W(IV)) = 0). The magnetic behavior of 2, where the high spin Co(II) ions are bridged by the paramagnetic [W(V)(CN)(8)](3-) units [S(W(V)) = 1/2], is that of ferromagnetically coupled Co(II) and W(V) giving rise to an ordered ferromagnetic phase below 18 K. The magnetic properties of 1 are used as a blank to extract the parameters that are useful to analyze the magnetic data of compound 2.  相似文献   

5.
Wang X  Sheng TL  Fu RB  Hu SM  Xiang SC  Wang LS  Wu XT 《Inorganic chemistry》2006,45(14):5236-5238
Reaction of [Cu(PPh3)2(MeCN)2]ClO4 (1) and Sn(edt)2 (edt = ethane-1,2-dithiolate) in dichloromethane afforded a novel compound [Sn3Cu4(S2C2H4)6(mu3-O)(PPh3)4](ClO4)2 x 3 CH2Cl2 (2), which is the first example of the heptanuclear Sn(IV)-Cu(I) oxosulfur complex with a bottle-shaped cluster core. Complex 2 gives a blue-green luminescent emission in the solid state. Crystallographic data for 2: C87H90Cl8Cu4O9P4S12Sn3, trigonal, space group R3, M = 2682.02, a = 18.156(2) A, b = 18.156(2) A, c = 54.495(10) A, gamma = 120 degrees, V = 15558(4) A3, Z = 6 (T = 130.15 K).  相似文献   

6.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

7.
Three dipeptide complexes of the form K[Pt(IV)(dipep)Cl3] and two complexes of the form K[Pt(IV)(Hdipep)Cl4] were newly prepared and isolated. The platinum(IV) complexes containing the dipeptide were obtained directly by adding KI to H2[PtCl6] solution. The reaction using KI was rapidly completed and provided analytically pure yellow products in the form of K[Pt(dipeptide)Cl3] for H2digly, H2gly(alpha)-ala, H2alpha-alagly and H2di(alpha)-ala. The K[Pt(IV)(digly)Cl3] complex crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a = 10.540(3) A, b = 13.835(3) A, c = 8.123(3) A, beta = 97.01(2) degrees, Z = 4. The crystal data represented the first report of a Pt(IV) complex with a deprotonated peptide, and this complex has the rare iminol type diglycine(2-) coordinating to Pt(IV) with the bond lengths of the C2-N1 (amide) bond (1.285(13) A). The 195Pt NMR peaks of the K[Pt(IV)(dipep)Cl3] and the K[Pt(IV)(Hdipep)Cl4] complexes appeared at about 270 ppm and at about -130 ppm, respectively, and were predicted for a given set of ligand atoms. While the K[Pt(IV)(x-gly)Cl3] complexes, where x denotes the glycine or alpha-alanine moieties, were easily reduced to the corresponding platinum(II) complexes, the K[Pt(IV)(x-alpha-ala)Cl3] complexes were not reduced, but the Cl- ion was substituted for OH- ion in the reaction solution. The K[Pt(digly)Cl3] and K[Pt(gly-L-alpha-ala)Cl3] complexes inhibited the growth of Candida albicans, and the antifungal activities were 3- to 4-fold higher than those of cisplatin. The metabolism of glucose in C. albicans was strongly inhibited by K[Pt(digly)Cl3] and K[Pt(gly-L-alpha-ala)Cl3] but not by the antifungal agent fluconazole.  相似文献   

8.
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.  相似文献   

9.
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).  相似文献   

10.
Single crystals of (Ag3Hg)VO4 (I), (Ag2Hg2)3(VO4)4 (II), AgHgVO4 (III), and (Ag2Hg2)2(HgO2)(AsO4)2 (IV) were grown under hydrothermal conditions (250 degrees C, 5 d) from starting mixtures of elementary mercury, silver nitrate, ammonium vanadate, and disodium hydrogenarsenate, respectively. All crystal structures were determined from X-ray diffraction data, and their chemical compositions were confirmed by electron microprobe analysis. I crystallizes in the tillmannsite structure, whereas II-IV adopt new structure types: (I) I4, Z = 2, a = 7.7095(2) A, c = 4.6714(2) A, 730 structure factors, 24 parameters, R[F2 > 2sigma(F2)] = 0.0365; (II) I42d, Z = 4, a = 12.6295(13) A, c = 12.566(3) A, 1524 structure factors, 55 parameters, R[F2 > 2sigma(F2)] = 0.0508; (III) C2, Z = 4, a = 9.9407(18) A, b = 5.5730(8) A, c = 7.1210(19) A, beta = 94.561(10) degrees , 1129 structure factors, 48 parameters, R[F2 > 2sigma(F2)] = 0.0358; (IV) P31c, Z = 2, a = 6.0261(9) A, c = 21.577(4) A, 1362 structure factors, 52 parameters, R[F2 > 2sigma(F2)] = 0.0477. The most striking structural features of I, II, and IV are the formation of tetrahedral cluster cations (Ag3Hg)3+ and (Ag2Hg2)4+, respectively, built of statistically distributed Ag and Hg atoms with a metal-metal distance of about 2.72 A. The electronic structure of these clusters can formally be considered as two-electron-four-center bonding. The crystal structure of III differs from the protrusive structure types insofar as silver and mercury are located on distinct crystallographic sites without a notable metal-metal interaction >3.55 A. All crystal structures are completed by tetrahedral oxo anions XO4(3-) (X = VV, AsV) and for IV additionally by a mercurate group, HgO2(2-).  相似文献   

11.
The arylation of [VCl3(thf)3] with LiR(Cl), where R(Cl) is a polychlorinated phenyl group [C6Cl5, 2,4,6-trichlorophenyl(tcp), or 2,6-dichlorophenyl (dcp)] gives four-coordinate, homoleptic organovanadium(III) derivatives with the formula [Li(thf)(4)][V(III)(R(Cl))(4)] (R(Cl) = C(6)Cl(5) (1), tcp (2), dcp (3)). The anion [V(III)(C6Cl5)4]- has an almost tetrahedral geometry, as observed in the solid-state structure of [NBu4][V(C6Cl5)4] (1') (X-ray diffraction). Compounds 1-3 are electrochemically related to the neutral organovanadium(IV) species [V(IV)(R(Cl))4] (R(Cl) = C6Cl5 (4), tcp (5), dcp (6)). The redox potentials of the V(IV)/V(III) semisystems in CH2Cl2 decrease with decreasing chlorination of the phenyl ring (E(1/2) = 0.84 (4/1), 0.42 (5/2), 0.25 V (6/3)). All the [V(IV)(R(Cl))4] derivatives involved in these redox couples could also be prepared and isolated by chemical methods. The arylation of [VCl(3)(thf)(3)] with LiC6F5 also gives a homoleptic organovanadium(III) compound, but with a different stoichiometry: [NBu4]2[V(III)(C6F5)5] (7). In this five-coordinate species, the C6F5 groups define a trigonal bipyramidal environment for the vanadium atom (X-ray diffraction). EPR spectra for the new organovanadium compounds 1-6 are also given and analysed in terms of an elongated tetrahedral structure with C(2v) local symmetry. It is suggested that the R(Cl) groups exert a protective effect towards the vanadium centre.  相似文献   

12.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   

13.
Reactions of dioxoruthenium(VI) porphyrins, [Ru(VI)O2(Por)], with p-chloroaniline, trimethylamine, tert-butylamine, p-nitroaniline, and diphenylamine afforded bis(amine)ruthenium(II) porphyrins, [Ru(II)(Por)(L)2] (L-p-ClC6H4NH2, Me3N, Por=TTP, 4-Cl-TPP; L=tBuNH2, Por = TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP) and bis(amido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(X)2] (X=p-NO2C6H4NH, Por=TTP, 4-Cl-TPP; X = Ph2N, Por = 3,4,5-MeO-TPP, 3,5-Cl-TPP), respectively. Oxidative deprotonation of [Ru(II)(Por)(NH2-p-C6H4Cl)2] in chloroform by air generated bis(arylamido)ruthenium(IV) porphyrins, [RuIV(Por)(NH-p-C6H4Cl)2] (Por=TTP. 4-Cl-TPP). Oxidation of [RuII(Por)-(NH2tBu)2] by bromine in dichloromethane in the presence of tert-butylamine and traces of water produced oxo(imido)ruthenium(VI) porphyrins, [RuVI-O(Por)(NtBu)] (Por=TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP). These new classes of ruthenium complexes were characterized by 1H NMR, IR, and UV/visible spectroscopy, mass spectrometry, and elemental analysis. The structure of [Ru(IV)(TTP)(NH-p-C6H4Cl)2 . CH2Cl2 was determined by X-ray crystallography. The Ru-N bond length and the Ru-N-C angle of the Ru-NHAr moiety are 1.956(7) A and 135.8(6) degrees, respectively.  相似文献   

14.
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mo?ssbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ~1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.  相似文献   

15.
The syntheses and properties of tetra- and pentanuclear vanadium(IV,V) carboxylate complexes are reported. Reaction of (NBzEt(3))(2)[VOCl(4)] (1a) with NaO(2)CPh and atmospheric H(2)O/O(2) in MeCN leads to formation of (NBzEt(3))(2)[V(5)O(9)Cl(O(2)CPh)(4)] 4a; a similar reaction employing (NEt(4))(2)[VOCl(4)] (1b) gives (NEt(4))(2)[V(5)O(9)Cl(O(2)CPh)(4)] (4b). Complex 4a.MeCN crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -148 degrees C: a = 13.863(13) ?, b = 34.009(43) ?, c = 12.773(11) ?, and Z = 4. The reaction between (NEt(4))(2)[VOBr(4)] (2a) and NaO(2)CPh under similar conditions gives (NEt(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6a), and the use of (PPh(4))(2)[VOBr(4)] (2b) likewise gives (PPh(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6b). Complex 6b crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -139 degrees C: a = 18.638(3) ?, b = 23.557(4) ?, c = 12.731(2) ?, and Z = 4. The anions of 4a and 6b consist of a V(5) square pyramid with each vertical face bridged by a &mgr;(3)-O(2)(-) ion, the basal face bridged by a &mgr;(4)-X(-) (X = Cl, Br) ion, and a terminal, multiply-bonded O(2)(-) ion on each metal. The RCO(2)(-) groups bridge each basal edge to give C(4)(v)() virtual symmetry. The apical and basal metals are V(V) and V(IV), respectively (i.e., the anions are trapped-valence). The reaction of 1b with AgNO(3) and Na(tca) (tca = thiophene-2-carboxylate) in MeCN under anaerobic conditions gives (NEt(4))(2)[V(4)O(8)(NO(3))(tca)(4)] (7). Complex 7.H(2)O crystallizes in space group C2/c with the following unit cell dimensions at -170 degrees C: a = 23.606(4) ?, b = 15.211(3) ?, c = 23.999(5) ?, and Z = 4. The anion of 7 is similar to those of 4a and 6b except that the apical [VO] unit is absent, leaving a V(4) square unit, and the &mgr;(4)-X(-) ion is replaced with a &mgr;(4),eta(1)-NO(3)(-) ion. The four metal centers are now at the V(IV), 3V(V) oxidation level, but the structure indicates four equivalent V centers, suggesting an electronically delocalized system. Variable-temperature magnetic susceptibility data were collected on powdered samples of 4b, 6a, and 7 in the 2.00-300 K range in a 10 kG applied field. 4b and 6a both show a slow increase in effective magnetic moment (&mgr;(eff)) from approximately 3.6-3.7 &mgr;(B) at 320 K to approximately 4.5-4.6 &mgr;(B) at 11.0 K and then a slight decrease to approximately 4.2 &mgr;(B) at 2.00 K. The data were fit to the theoretical expression for a V(IV)(4) square with two exchange parameters J = J(cis)() and J' = J(trans)() (H = -2JS(i)()S(j)()): fitting of the data gave, in the format 4b/6a, J= +39.7/+46.4 cm(-)(1), J' = -11.1/-18.2 cm(-)(1) and g = 1.83/1.90, with the complexes possessing S(T) = 2 ground states. The latter were confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.500-50.0 kG ranges: fitting of the data gave S(T) = 2 and D = 0.00 cm(-)(1) for both complexes, where D is the axial zero-field splitting parameter. Complex 7 shows a nearly temperature-independent &mgr;(eff) (1.6-2.0 &mgr;(B)) consistent with a single d electron per V(4) unit. The (1)H NMR spectra of 4b and 6a in CD(3)CN are consistent with retention of their pentanuclear structure on dissolution. The EPR spectrum of 7 in a toluene/MeCN (1:2) solution at approximately 25 degrees C yields an isotropic signal with a 29-line hyperfine pattern assignable to hyperfine interactions with four equivalent I = (7)/(2) (51)V nuclei.  相似文献   

16.
The reaction of [Fe(II)(beta-BPMCN)(OTf)2] (1, BPMCN = N,N'-bis(2-pyridylmethyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane) with tBuOOH at low-temperature yields alkylperoxoiron(III) intermediates 2 in CH2Cl2 and 2-NCMe in CH3CN. At -45 degrees C and above, 2-NCMe converts to a pale green species 3 (lambda(max) = 753 nm, epsilon = 280 M(-1) cm(-1)) in 90% yield, identified as [Fe(IV)(O)(BPMCN)(NCCH3)]2+ by comparison to other nonheme [Fe(IV)(O)(L)]2+ complexes. Below -55 degrees C in CH2Cl2, 2 decays instead to form deep turquoise 4 (lambda(max) = 656, 845 nm; epsilon = 4000, 3600 M(-1) cm(-1)), formulated to be an unprecedented alkylperoxoiron(IV) complex [Fe(IV)(BPMCN)(OH)(OOtBu)]2+ on the basis of M?ssbauer, EXAFS, resonance Raman, NMR, and mass spectral evidence. The reactivity of 1 with tBuOOH in the two solvents reveals an unexpectedly rich iron(IV) chemistry that can be supported by the BPMCN ligand.  相似文献   

17.
The synthesis of new dinuclear manganese(IV) complexes possessing the [Mn(IV)(2)(mu-O)(2)(mu-O(2)CMe)](3+) core and containing halide ions as terminal ligands is reported. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)] (1; bpy = 2,2'-bipyridine) was prepared by sequential addition of [MnCl(3)(bpy)(H(2)O)] and (NBzEt(3))(2)[MnCl(4)] to a CH(2)Cl(2) solution of [Mn(3)O(4)(O(2)CMe)(4)(bpy)(2)]. The complex [Mn(IV)(2)O(2)(O(2)CMe)Cl(bpy)(2)(H(2)O)](NO(3))(2) (2) was obtained from a water/acetic acid solution of MnCl(2).4H(2)O, bpy, and (NH(4))(2)[Ce(NO(3))(6)], whereas the [Mn(IV)(2)O(2)(O(2)CR)X(bpy)(2)(H(2)O)](ClO(4))(2) [X = Cl(-) and R = Me (3), Et (5), or C(2)H(4)Cl (6); and X = F(-), R = Me (4)] were prepared by a slightly modified procedure that includes the addition of HClO(4). For the preparation of 4, MnF(2) was employed instead of MnCl(2).4H(2)O. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)].2CH(2)Cl(2) (1.2CH(2)Cl(2)) crystallizes in the monoclinic space group C2/c with a = 21.756(2) A, b = 12.0587(7) A, c = 26.192(2) A, alpha = 90 degrees, beta = 111.443(2) degrees, gamma = 90 degrees, V = 6395.8(6) A(3), and Z = 4. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](NO(3))(2).H(2)O (2.H(2)O) crystallizes in the triclinic space group Ponemacr; with a = 11.907(2) A, b = 12.376(2) A, c = 10.986(2) A, alpha = 108.24(1) degrees, beta = 105.85(2) degrees, gamma = 106.57(1) degrees, V = 1351.98(2) A(3), and Z = 2. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](ClO(4))(2).MeCN (3.MeCN) crystallizes in the triclinic space group Ponemacr; with a = 11.7817(7) A, b = 12.2400(7) A, c = 13.1672(7) A, alpha = 65.537(2) degrees, beta = 67.407(2) degrees, gamma = 88.638(2) degrees, V = 1574.9(2) A(3), and Z = 2. The cyclic voltammogram (CV) of 1 exhibits two processes, an irreversible oxidation of the [MnCl(4)](2)(-) at E(1/2) approximately 0.69 V vs ferrocene and a reversible reduction at E(1/2) = 0.30 V assigned to the [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](+/0) couple (2Mn(IV) to Mn(IV)Mn(III)). In contrast, the CVs of 2 and 3 show only irreversible reduction features. Solid-state magnetic susceptibility (chi(M)) data were collected for complexes 1.1.5H(2)O, 2.H(2)O, and 3.H(2)O in the temperature range 2.00-300 K. The resulting data were fit to the theoretical chi(M)T vs T expression for a Mn(IV)(2) complex derived by use of the isotropic Heisenberg spin Hamiltonian (H = -2JS(1)S(2)) and the Van Vleck equation. The obtained fit parameters were (in the format J/g) -45.0(4) cm(-)(1)/2.00(2), -36.6(4) cm(-)(1)/1.97(1), and -39.3(4) cm(-)(1)/1.92(1), respectively, where J is the exchange interaction parameter between the two Mn(IV) ions. Thus, all three complexes are antiferromagnetically coupled.  相似文献   

18.
Treatment of [Fe(IV)(O)(TPA)(NCMe)](CF3SO3)2 [TPA, N,N,N-tris(2-pyridylmethyl)amine] with 3 equiv of NR4X (X = CF3CO2, Cl, or Br) in MeCN at -40 degrees C affords a series of metastable [Fe(IV)(O)(TPA)(X)]+ complexes. Some characteristic features of the S = 1 oxoiron(IV) unit are quite insensitive to the ligand substitution in the equatorial plane, namely, the Fe-O distances (1.65-1.66 A), the energy ( approximately 7114.5 eV) and intensity [25(2) units] of the 1s-to-3d transition in the X-ray absorption spectra, and the M?ssbauer isomer shifts (0.01-0.06 mm.s(-1)) and quadrupole splittings (0.92-0.95 mm.s(-1)). The coordination of the anionic X ligand, however, is evidenced by red shifts of the characteristic near-IR ligand-field bands (720-800 nm) and spectroscopic observation of the bound anion by (19)F NMR for X = CF3CO2 and by EXAFS analysis for X = Cl (r(Fe-Cl) = 2.29 A) and Br (r(Fe-Br) = 2.43 A). Density functional theory calculations yield M?ssbauer parameters and bond lengths in good agreement with the experimental data and produce excited-state energies that follow the trend observed in the ligand-field bands. Despite mitigating the high effective charge of the iron(IV) center, the substitution of the MeCN ligand with monoanionic ligands X- decreases the thermal stability of [Fe(IV)(O)(TPA)]2+ complexes. These anion-substituted complexes model the cis-X-Fe(IV)=O units proposed in the mechanisms of oxygen-activating nonheme iron enzymes.  相似文献   

19.
Guanosine derivatives with a nucleophilic group at the 5' position (G-5') are oxidized by the Pt (IV) complex Pt( d, l)(1,2-(NH 2) 2C 6H 10)Cl 4 ([Pt (IV)(dach)Cl 4]). The overall redox reaction is autocatalytic, consisting of the Pt (II)-catalyzed Pt (IV) substitution and two-electron transfer between Pt (IV) and the bound G-5'. In this paper, we extend the study to improve understanding of the redox reaction, particularly the substitution step. The [Pt (II)(NH 3) 2(CBDCA-O,O')] (CBDCA = cyclobutane-1,1-dicarboxylate) complex effectively accelerates the reactions of [Pt (IV)(dach)Cl 4] with 5'-dGMP and with cGMP, indicating that the Pt (II) complex does not need to be a Pt (IV) analogue to accelerate the substitution. Liquid chromatography/mass spectroscopy (LC/MS) analysis showed that the [Pt (IV)(dach)Cl 4]/[Pt (II)(NH 3) 2(CBDCA-O,O')]/cGMP reaction mixture contained two Pt (IV)cGMP adducts, [Pt (IV)(NH 3) 2(cGMP)(Cl)(CBDCA-O,O')] and [Pt (IV)(dach)(cGMP)Cl 3]. The LC/MS studies also indicated that the trans, cis-[Pt (IV)(dach)( (37)Cl) 2( (35)Cl) 2]/[Pt (II)(en)( (35)Cl) 2]/9-EtG mixture contained two Pt (IV)-9-EtG adducts, [Pt (IV)(en)(9-EtG)( (37)Cl)( (35)Cl) 2] and [Pt (IV)(dach)(9-EtG)( (37)Cl)( (35)Cl) 2]. These Pt (IV)G products are predicted by the Basolo-Pearson (BP) Pt (II)-catalyzed Pt (IV)-substitution scheme. The substitution can be envisioned as an oxidative addition reaction of the planar Pt (II) complex where the entering ligand G and the chloro ligand from the axial position of the Pt (IV) complex are added to Pt (II) in the axial positions. From the point of view of reactant Pt (IV), an axial chloro ligand is thought to be substituted by the entering ligand G. The Pt (IV) complexes without halo axial ligands such as trans, cis-[Pt(en)(OH) 2Cl 2], trans, cis-[Pt(en)(OCOCF 3) 2Cl 2], and cis, trans, cis-[Pt(NH 3)(C 6H 11NH 2)(OCOCH 3) 2Cl 2] ([Pt (IV)(a,cha)(OCOCH 3) 2Cl 2], satraplatin) did not react with 5'-dGMP. The bromo complex, [Pt (IV)(en)Br 4], showed a significantly faster substitution rate than the chloro complexes, [Pt (IV)(en)Cl 4] and [Pt (IV)(dach)Cl 4]. The results indicate that the axial halo ligands are essential for substitution and the Pt (IV) complexes with larger axial halo ligands have faster rates. When the Pt (IV) complexes with different carrier ligands were compared, the substitution rates increased in the order [Pt (IV)(dach)Cl 4] < [Pt (IV)(en)Cl 4] < [Pt (IV)(NH 3) 2Cl 4], which is in reverse order to the carrier ligand size. These axial and carrier ligand effects on the substitution rates are consistent with the BP mechanism. Larger axial halo ligands can form a better bridging ligand, which facilitates the electron-transfer process from the Pt (II) to Pt (IV) center. Smaller carrier ligands exert less steric hindrance for the bridge formation.  相似文献   

20.
A six-coordinate oxovanadium(V) thiolate complex and an eight-coordinate non-oxovanadium thiolate complex, [PPh(4)][VO(PS3')(OCH(3))] (1) and [NEt(4)][V(PS3')(2)] (2) (PS3' = P(C(6)H(3)-3-Me(3)Si-2-S)(3)(3-)), respectively, have been isolated and structurally characterized. The former belongs to a limited collection of oxovanadium(V) thiolate complexes. The latter has an unusual coordination number of eight. More importantly, its consensus electronic structure derived from its spectroscopic data should be considered as the resonance forms of V(V)-thiolate and V(IV)-thiyl radical species. This implies that V(IV)-thiyl radical can maintain a stable presence in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号