首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitriles were found to be highly effective alkylating reagents for the selective N-alkylation of amines under catalytic hydrogenation conditions. For the aromatic primary amines, the corresponding secondary amines were selectively obtained under Pd/C-catalyzed hydrogenation conditions. Although the use of electron poor aromatic amines or bulky nitriles showed a lower reactivity toward the reductive alkylation, the addition of NH(4)OAc enhanced the reactivity to give secondary aromatic amines in good to excellent yields. Under the same reaction conditions, aromatic nitro compounds instead of the aromatic primary amines could be directly transformed into secondary amines via a domino reaction involving the one-pot hydrogenation of the nitro group and the reductive alkylation of the amines. While aliphatic amines were effectively converted to the corresponding tertiary amines under Pd/C-catalyzed conditions, Rh/C was a highly effective catalyst for the N-monoalkylation of aliphatic primary amines without over-alkylation to the tertiary amines. Furthermore, the combination of the Rh/C-catalyzed N-monoalkylation of the aliphatic primary amines and additional Pd/C-catalyzed alkylation of the resulting secondary aliphatic amines could selectively prepare aliphatic tertiary amines possessing three different alkyl groups. According to the mechanistic studies, it seems reasonable to conclude that nitriles were reduced to aldimines before the nucleophilic attack of the amine during the first step of the reaction.  相似文献   

2.
The nucleophilic aromatic substitution (S(N)Ar) reaction between 1-fluoro-2,4-dinitrobenzene and piperidine (PIP) were studied in two different reverse micellar interfaces: benzene/sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT)/water and benzene/benzyl-n-hexadecyl dimethylammonium chloride (BHDC)/water reverse micellar media. The kinetic profiles of the reactions were investigated as a function of variables such as surfactant and amine concentration and the amount of water dispersed in the reverse micelles, W0 = [H2O]/[surfactant]. In the AOT system at W0 = 0, no micellar effect was observed and the reaction takes place almost entirely in the benzene pseudophase, at every AOT and PIP concentration. At W0 = 10, a slight increment of the reaction rate was observed at low [PIP] with AOT concentration, probably due to the increase of micropolarity of the medium. However, at [PIP] > or = 0.07 M the reaction rates are always higher in pure benzene than in the micellar medium because the catalytic effect of the amine predominates in the organic solvent. In the BHDC system the reaction is faster in the micellar medium than in the pure solvent. Increasing the BHDC concentration accelerates the overall reaction, and the saturation of the micellar interface is never reached. In addition, the reaction is not base-catalyzed in this micellar medium. Thus, despite the partition of the reactants in both pseudophases the reactions effectively take place at the interface of the aggregates. The kinetic behavior can be quantitatively explained taking into account the distribution of the substrate and the nucleophile between the bulk solvent and the micelle interface. The results were used to evaluate the amine distribution constant between the micellar pseudophase and organic solvent and the second-order rate coefficient of S(N)Ar reaction in the interface. A mechanism to rationalize the kinetic results in both interfaces is proposed.  相似文献   

3.
In this contribution is reported the sensitive properties of the Zn(II) Schiff base complex, 1, in dichloromethane with respect a series of primary, secondary, and tertiary aliphatic amines through the study of fluorescence enhancement upon amine coordination to the Lewis acidic Zn(II) metal center with formation of 1:1 adducts. It is found that complex 1 exhibits selectivity and nanomolar sensitivity for primary and alicyclic amines. A distinct selectivity is also observed along the series of secondary or tertiary amines, paralleling the increasing steric hindrance at the nitrogen atom. The binding interaction can be related to the Lewis basicity of the coordinating amine; thus, complex 1 represents a suitable reference Lewis acid, and estimated binding constants within the investigated amine series can be related to their relative Lewis basicity. A relative order of the Lewis basicity can be established for acyclic amines, primary > secondary > tertiary, while an inverted order, tertiary > secondary ≈ primary (acyclic), is found in the case of alicyclic amines. The present approach represents a simple, suitable method to ranking the relative Lewis basicity of aliphatic amines in low-polarity, nonprotogenic solvents.  相似文献   

4.
Second-order rate constants (k(Nu)) have been measured for the addition of amines to ketenes 4-6 in acetonitrile solution by the laser flash photolysis technique. These ketenes are formed from a photochemical Wolff rearrangement of diazoketones 1-3, respectively. For all diazoketones studied, the presence of amines as nucleophiles in the reaction medium results in the formation of an intermediate that later converts to the amide. The rate of formation of these intermediates is linearly dependent on amine concentration. Various classes of amines, such as primary, secondary, and tertiary, aromatic, and aliphatic, have been used to investigate the ketene reactivity, and rate constants in the range 10(4)-10(9) M(-1) s(-1) have been measured. Reaction rates are dependent upon steric effects in both the ketene and the nucleophile, which is consistent with a reaction mechanism involving nucleophilic attack at Calpha in the molecular plane of the ketene. On the basis of these data, a set of N(+) parameters for the reaction of amines with ketenes was determined.  相似文献   

5.
The reduction of three aromatic ketones, acetophenone (AF), 4-methoxyacetophenone (MAF), and 3-chloroacetophenone (CAF), by NaBH(4) was followed by UV-vis spectroscopy in reverse micellar systems of water/AOT/isooctane at 25.0 degrees C (AOT is sodium 1,4-bis-2-ethylhexylsulfosuccinate). The first-order rate constants, k(obs), increase with the concentration of surfactant due to the substrate incorporation at the reverse micelle interface, where the reaction occurs. For all the ketones the reactivity is lower at the micellar interface than in water, probably reflecting the low affinity of the anionic interface for BH(4)(-). Kinetic profiles upon water addition show maxima in k(obs) at W(0) approximately 5 probably reflecting a strong interaction between water and the ionic headgroup of AOT; at W(0) < 5 by increasing W(0) BH(4)(-) is repelled from the anionic interface once the water pool forms. The order of reactivity was CAF > AF > MAF. Application of a kinetic model based on the pseudophase formalism, which considers distribution of the ketones between the continuous medium and the interface, and assumes that reaction take place only at the interface, gives values of the rate constants at the interface of the reverse micellar system. At W(0) = 5, we conclude that NaBH(4) is wholly at the interface, and at W(0) = 10 and 15, where there are free water molecules, the partitioning between the interface and the water pool has to be considered. The results were used to estimate the ketone and borohydride distribution constants between the different pseudophases as well as the second-order reaction rate constant at the micellar interface.  相似文献   

6.
    
Rate constants for the reaction of phosphate radical with some aromatic and aliphatic amines have been determined by the flash photolysis technique. The products formed under conditions of continuous irradiation have been identified. In the case of an aromatic amine the major product is the azo compound while in the case of an aliphatic amine a carbonyl compound is formed.  相似文献   

7.
This paper has explored the quenching of fluorescence of the dye safranine T (ST) by the inorganic cations viz Cu2+, Co2+, Ni2+ and Mn2+ in micellar solutions of the surfactant dioxyethylene nonyl phenol (Igepal CO-210), pentaoxyethylene nonyl phenol (Igepal CO-520) and dodecaoxyethylene nonyl phenol (Igepal CO-720). The quenching results have been calculated in light of stern volmer equation (SV) to evaluate the extent of interaction between the fluorophore (ST) and quencher. The average concentration of the quencher ions in the micelle have been determined. The quenching efficiency of ST by inorganic ions in micellar medium is lower than that in aqueous medium. The results show that the ions get partitioned in the micellar medium. The values of the partition coefficient of the ions decrease with increase in HLB value and number of oxyethylene groups in Igepal.  相似文献   

8.
2‐[(2E)‐3‐(4‐tert‐Butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) has been considered as an excellent matrix for matrix‐assisted laser desorption/ionization (MALDI) of many types of synthetic compounds. However, it might provide troublesome results for compounds containing aliphatic primary or secondary amino groups. For these compounds, strong extra ion peaks with a mass difference of 184.1 Da were usually observed, which might falsely indicate the presence of some unknown impurities that were not detected by other matrices. On the basis of the possible mechanisms proposed, these extra ions are the products of nucleophilic reactions between analyte amino groups and DCTB molecules or radical cations. In these reactions, an amino group replaces the dicyanomethylene group of DCTB forming a matrix adduct via a ? C?N‐bond. An aliphatic primary amine could react easily with DCTB and the reaction could start once they are mixed in a MALDI solution. For an aliphatic secondary amine, on the other hand, the reaction most likely occurs in the gas phase. Protonation of amino groups by adding acid seems to be a useful way to stop DCTB adduction for compounds with one single amino group, but not for compounds with multiple amino groups. Unlike aliphatic primary or secondary amines, aliphatic tertiary amines and aromatic amines do not yield DCTB adducts. This is because tertiary amines do not have the required transferrable H‐(N) atom to form an extra ? C?N‐bond, while aromatic amines are not sufficiently nucleophilic to attack DCTB. In view of the possible matrix adduction, care should be taken in MALDI time‐of‐flight mass spectrometry (TOF MS) when DCTB is used as the matrix for compounds containing amino group(s). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Aliphatic amines, such as n-hexylamine (primary), di-n-hexylamine (secondary) and tri-n-hexylamine (tertiary amine), react with tetrabromophenolphthalein ethyl ester molecules (TBPEH) to form reddish or red-violet charge-transfer complexes (CT complexes) in 1,2-dichloroethane (DCE). The absorption maxima of the CT complexes with all primary amines occur at around 560 nm, with secondary amines at 570 nm and, with tertiary amines at 580 nm. The CT complex formation constants with TBPEH in DCE increase in the order of the primary, secondary and tertiary amines, but their constants decrease quantitatively with an increase in temperature. This phenomenon (thermochromism) could be applied to the simultaneous spectrophotometric determination of primary amine and secondary amine, or secondary amine and tertiary amine in a mixed solution utilizing the difference of absorbance with temperature changes.  相似文献   

10.
The reaction of the ground and excited states of lumichrome (=7,8‐dimethylalloxazine=7,8‐dimethylbenzo[g]pteridine‐2,4(1H,3H)‐dione) with aliphatic and aromatic amines was investigated in MeOH. In the presence of aliphatic amines of high basicity, new bands are observed in the absorption and fluorescence spectra. These bands arise in a proton‐transfer reaction from lumichrome, in the ground and in the singlet excited states, to the amine. On the other hand, amines with lower basicity such as triethanolamine (=2,2′,2″‐nitrilotris[ethanol]) and aromatic amines are not able to deprotonate lumichrome, and hence a quenching of the fluorescent emission takes place without changes in the spectral shape. In this case, bimolecular‐quenching rate constants were determined for the excited singlet and triplet states. Based on laser‐flash‐photolysis experiments, an electron‐transfer mechanism is proposed. Aliphatic amines yield lower rate constants than the aromatic ones for the same driving force. A notable difference arises in the limiting value reached by the singlet and triplet quenching rate constants by aromatic amines. For the singlet quenching, the limit is coincident with a diffusion‐controlled reaction, while those for triplet quenching reach a lower constant value, independent of the driving force. This is explained by an electron‐transfer mechanism, with a lower frequency factor for the triplet‐state process.  相似文献   

11.
All-trns-N-retinylidenetryptamine Schiff base was incorporated into aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulphosuccinate)/heptane reverse micelles. This micellar system was used as a model to study the retinal-tryptophan interactions in retinal proteins. The retinylidene Schiff base remains stable in the presence of reverse micelle-solubilized water pools. Partition coefficient and microviscosity measurements show that the Schiff base is located in the micellar interphase. The results are discussed in terms of the interaction between the retinylidene chromophore and the active site environment of rhodopsin and bacteriorhodopsin. In the present model, the quencher and emitting units are covalently attached, and are separated by two carbon spacer units. The fluorescence emission data obtained for the micelle-intercalated Schiff base chromophore are compared with the fluorescence of the native protein and intermediates in the photochemical cycle of bacteriofhodopsin. A comparison of the data obtained for tryptamine and the Schiff base with the results available for bacteriorhodopsin and bacterioopsin reveals that there is a large degree of quenching on intercalation of the retinylidene chromophore in the vicinity of the fluorophore. Evidence provided by this model suggests that energy transfer to retinal can occur from tryptophan residues located in the retinal pocket in the native protein. Thus the retinylidene unit can act as a quencher of the energy of tryptophan, the nature and extent of which may depend on the conformation and relative orientation of the protein-bound fluorophore.  相似文献   

12.
The reactivity of the peroxymonocarbonate ion, HCO4- (an active oxidant derived from the equilibrium reaction of hydrogen peroxide and bicarbonate), has been investigated in the oxidation of aliphatic amines. Tertiary aliphatic amines are oxidized to the corresponding N-oxides in high yields, while secondary amines give corresponding nitrones. A closely related mechanism for the H2O2 oxidation of tertiary amines catalyzed by CO2 (under 1 atm) and H2O2 at 25 degrees C is proposed. The rate laws for the oxidation of N-methylmorpholine (1) to N-methylmorpholine N-oxide and N,N-dimethylbenzylamine (2) to N,N-dimethylbenzylamine N-oxide have been obtained. The second-order rate constants for the oxidation by HCO4- are k1 .016 M(-1) s(-1) for 1 in water and k1=0.042 M(-1) s(-1) for 2 in water/acetone (5:1). The second-order rate constants for tertiary amine oxidations by HCO4- are over 400-fold greater than those for H2O2 alone. Activation parameters for oxidation of 1 by HCO4- in water are reported (DeltaH=36+/-2 kJ mol(-1) and DeltaS=-154+/-7 J mol(-1) K(-1)). The BAP (NH4HCO3-activated peroxide) or CO2/H2O2 oxidation reagents are simple and economical methods for the preparation of tertiary amine N-oxides. The reactions proceed to completion, do not require extraction, and afford the pure N-oxides in excellent yields in aqueous media.  相似文献   

13.
Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.  相似文献   

14.
The electrochemically induced functionalization of glassy carbon electrode by aryl groups having an aliphatic amine group was achieved by reduction of in situ generated diazonium cations in aqueous media. The corresponding diazonium cations of 4-aminobenzylamine, 2-aminobenzylamine, 4-(2-aminoethyl)aniline, N-methyl-1,2-phenylenediamine, and N, N-dimethyl- p-phenylenediamine were generated in situ with sodium nitrite in aqueous HCl. The kinetics of electrochemical grafting were investigated with electrochemical impedance spectroscopy and electrochemical quartz crystal microbalance measurements (with carbon-coated quartz crystal), and the barrier properties of the grafted layers were evaluated by cyclic voltammetry in the presence of electroactive redox probes such as Fe(CN)6 3-/4- and Ru(NH 3)6 (3+). The grafting efficiency of aryl groups was found to depend on the nature of the amine (primary, secondary, and tertiary), the chain length of the alkyl substituent, and the substitution position on the aromatic ring. The nitrosation of the "aliphatic" amine, in the case of secondary and tertiary amines, was also evidenced by X-ray photoelectron spectroscopy.  相似文献   

15.
Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (DeltaG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-DeltaG0) of approximately 0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor--acceptor separation in the micellar ET reactions is substantially larger than for the donor--acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor--acceptor close contact suggests that there is an intervention of a surfactant chain between the interacting donor and acceptor in the micellar ET reaction.  相似文献   

16.
The work is devoted to the investigation of thermodynamics of specific interaction of the tertiary aliphatic and aromatic amines with associated solvents as which aliphatic alcohols were taken. Solution enthalpies of aliphatic alcohols in amines (tri-n-propylamine, 2-methylpyridine, 3-methylpyridine, N-methylimidazole) as well as amines in alcohols were measured at infinite dilution. The enthalpies of specific interaction (H-bonding) in systems studied were determined based on experimental data. The enthalpies of specific interaction of amines in aliphatic alcohols significantly lower than the enthalpies of hydrogen bonding in complexes amine–alcohol of 1:1 composition determined in base media due to the reorganization of aliphatic alcohols as solvents. The determination of solvent reorganization contribution makes possible to define the hydrogen bonding enthalpies of amines with clusters of alcohols. Obtained enthalpies of hydrogen bonding in multi-particle complexes are sensitive to the influence of cooperative effect. It was shown, that hydrogen bond cooperativity factors in multi-particle complexes of alcohols with amines are approximately equal for all alcohols when pyridines and N-methylimidazole as solutes are used. At the same time, H-bonding cooperativity factors in complexes of trialkylamines with associative species of alcohols decrease with increasing of alkyl radical length in alcohol and amine molecules.This work shows that the thermodynamic functions of specific interaction of solutes with associated solvents cannot be described using the H-bond parameters for the complexes of 1:1 composition.  相似文献   

17.
A computational study, using density functional theory calibrated against higher-level methods, has been undertaken to evaluate tertiary amines whose radical cations might lose hydrogen atoms from positions other than the alpha carbons. The purpose was to find photochemically activated reducing agents for carbon dioxide that could be regenerated in a separate photochemical reaction. The calculations have revealed two reactions that might be suitable for this purpose. In one, the nitrogen of the radical cation makes a bond to a remote carbon with simultaneous displacement of a hydrogen atom. In the other, a remote hydrogen atom is transferred to the nitrogen, thereby creating a distonic radical cation that can lose a hydrogen atom beta to the radical site. The latter reaction is found to be particularly favorable since it apparently involves a surface crossing that allows the amine radical cation and CO2 radical anion to transform smoothly to a ground-state formate ion and an alkene. A number of structural motifs are investigated for the amines. The lower ionization potential of aromatic amines, compared to their aliphatic analogues, is desirable in that it could permit the use of longer wavelength light to drive the reaction. However, a thermochemical cycle shows that the reduction in ionization potential must be matched by an increase in proton affinity of the amine if the intramolecular hydrogen transfer is to be exothermic. Most aromatic amines do not satisfy this criterion and, hence, would have to rely on the displacement reaction for hydrogen-atom release if they were to be used as renewable reagents for CO2 reduction. Examples of specific aromatic and aliphatic tertiary amines that should be suitable for the purpose are presented, and their relative merits and weaknesses are discussed.  相似文献   

18.
We have investigated the influence of the chemical structure of polyepoxide networks on the sorption behaviour and water-induced changes of viscoelastic and mechanical properties. The β relaxation was found to be unaffected by the presence of adsorbed water for an anhydride and an aromatic amine based polyepoxide. The anhydride based network shows better behaviour in a water environment than the aromatic amine based network in terms of plasticisation, reversibility of the degradation and loss of mechanical properties. This has been attributed to (i) a smaller crosslinking density, leading to a smaller specific volume in the glassy state and thus a smaller water uptake and (ii) a strong interaction between water and tertiary amines in epoxide-aromatic amine networks. This interaction, probably of electrostatic nature, would result from the delocalization of the doublet of the nitrogen atom. The results are critically compared to the literature on aliphatic amine based polyepoxides, where the dependence of the β relaxation on the water content is proposed to be related to the electron-donating ability of the aliphatic chain.  相似文献   

19.
The behavior of acridine orange base (AOB) in nonaqueous reverse micelles composed of n-heptane/AOT/polar solvent has been performed. Ethylene glycol (EG), propylene glycol (PG), glycerol (GY), formamide (FA), dimethylformamide (DMF), and dimethylacetamide (DMA) were employed as water substitutes. The studies were performed by static and time-resolved emission spectroscopy. Thus, the distribution of AOB between the two pseudophases of the aggregates was quantified by measuring the partition constants from emission spectra at different surfactant concentration. Similar values to those obtained by means of absorption spectroscopy were obtained. This match is indicating that AOB is not experiencing partition during the lifetime of the excited state. Partitioning to the micelles is strongly favored in micelles containing hydrogen-bond donor (HBD) solvents rather than non-HBD solvents. Variations of fluorescence lifetimes with AOT concentration confirm these results. By the solvatochromic behavior of AOB in the different systems it is shown that the microenvironment at the interface is distinct from that of the bulk polar solvent, indicating that the probe senses no "free" solvent. The steady state anisotropy (r) was measured for EG/AOT/n-heptane and DMF/AOT/n-heptane systems as representatives for HBD and non-HBD polar solvents, respectively. The value of r is higher in the micelles containing EG than that obtained with DMF, and increases with AOT concentration. This is explained as due to highly structured polar solvents in the inner core. EG is interacting with the polar heads of AOT through hydrogen-bond interaction, while DMF can only interact with the Na+ counterions. This is confirmed by the time-resolved emission spectra (TRES) of the probe in the micellar systems, in comparison with the bulk solvents.  相似文献   

20.
A variety of aliphatic and aromatic aldehydes and ketones were efficiently reduced to their corresponding amines when treated with primary and secondary amines and NaBH4 in micellar media at room temperature under neutral conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号