首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal decomposition of ammonium perchlorate based mixture with fullerenes   总被引:1,自引:0,他引:1  
The effects of fullerenes, including fellerene soot (FS), extracted fullerene soot (EFS) and pure C60 on the thermal decomposition of ammonium perchlorate (AP) compared with traditional carbon black (CB) catalyst has been studied by employing thermogravimetry (TG), differential thermal analysis (DTA), infrared spectroscopy (IR) and ignition temperature experiments. The results showed that the addition of CB and FS to AP reduced the activation energy as well as the temperature at maximum decomposition rate, but that of EFS and pure C60 had little effect on the thermal decomposition of AP, and among all catalysts, FS was the best one.  相似文献   

2.
The effects of various burning rate catalysts on thermal decomposition of cured glycidyl azide polymer (GAP)-ammonium perchlorate (AP) propellants have been studied by means of thermal analysis and a modified vacuum stability test (MVST). Four types of iron-containing catalysts examined in this paper are catocene, ferrocenecarboxaldehyde (FCA), ferrocene, and ferric oxide. Results of differential thermal analysis (DTA) and thermogravimetric analysis (TG) revealed that the catalysts play an important role in the decomposition of both AP and GAP. The peak decomposition temperature (T m) of DTA curves and onset decomposition temperature (T o) of TG patterns considerably shifted to a lower temperature as the concentration of catalysts increased in the propellants. The endothermic temperature of AP, however, is unaffected by the presence of burning rate catalysts in all cases. The activation energy of decomposition of the propellants in range of 80 to 120°C is determined, based on the MVST results.  相似文献   

3.
Some new hydrazinium 2-pyrazinecarboxylate and 2,3-pyrazinedi-carboxylate salts of the formulae N2H5pc, N2H5pc.H2O (Hpc = 2-pyrazinecarboxylic acid), N2H5Hpdc, (N2H5)2pdc.H2O and N2H5(Hpdc).H2pdc (H2pdc = 2,3-pyrazinedi-carboxylic acid) have been prepared by neutralization of aqueous hydrazine hydrate with the respective acids in appropriate molar ratios. The free acids and their hydrazinium salts have been characterized by analytical, IR spectroscopic and thermal studies. IR spectra of all the salts show N-N stretching frequencies of the N2H5 + ion in the region 975–960 cm-1. The thermoanalytical behaviour of the free acids and their salts has been investigated by simultaneous TG and DTA. While pyrazinecarboxylic acid shows single-step endothermic (229°C) complete decomposition, pyrazindi-carboxylic acid shows exothermic decarboxylation followed by identical endothermic decomposition as that of the former. Similarly, salts of the monocarboxylic acid show endothermic effects during pyrolysis, whereas salts of the dicarboxylic acid show endothermic followed by exothermic decomposition. The acids and their salts both undergo complete decomposition to gaseous products.  相似文献   

4.
Three new complex compounds of general formula Zn{4-ClC6H3-2-(OH)COO}2L2nH2O (where L=thiourea (tu), nicotinamide (nam), caffeine (caf), n=2,3), were prepared and characterized by chemical analysis, IR spectroscopy and their thermal properties were studied by TG/DTG, DTA methods. It was found that the thermal decomposition of hydrated compounds starts with the release of water molecules. During the thermal decomposition of anhydrous compounds the release of organic ligands take place followed by the decomposition of salicylate anion. Zinc oxide was found as the final product of the thermal decomposition performed up to 650°C. RTG powder diffraction method, IR spectra and chemical analysis were used for the determination of products of the thermal decomposition.  相似文献   

5.
Thermal decomposition of tetra(piperidinium) octamolybdate tetrahydrate, [C5H10NH2]4[Mo8O26]·4H2O, was investigated in air by means of TG‐DTG/DTA, DSC, TG‐IR and SEM. TG‐DTG/DTA curves showed that the decomposition proceeded through three well‐defined steps with DTA peaks closely corresponding to mass loss obtained. Kinetics analysis of its dehydration step was performed under non‐isothermal conditions. The dehydration activation energy was calculated through Friedman and Flynn‐Wall‐Ozawa (FWO) methods, and the best‐fit dehydration kinetic model function was estimated through the multiple linear regression method. The activation energy for the dehydration step of [C5H10NH2]4[Mo8O26]·4H2O was 139.7 kJ/mol. The solid particles became smaller accompanied by the thermal decomposition of the title compound.  相似文献   

6.
Glutamic acid (H2glu) and its lithium, sodium and ammonium monosalts were submitted to thermal analysis using thermogravimetry (TG) and differential thermal analysis (DTA). The main goal of these studies was to compare the relative thermal stability and to evaluate the effect of the counter ion in the thermal decomposition pathways. Salts were obtained by direct neutralization of the purified acid with LiOH, NaOH or NH4OH and were characterized by elemental analysis (C, H and N) and IR spectroscopy. Decomposition occurred after conversion to the pyroglutamic acid or the respective pyroglutamates and ammonium salt loosing NH3 being converted to H2glu before decomposition.  相似文献   

7.
Summary A mixed metal oxalate, manganese(II)bis(oxalato)nickelate(II)tetrahydrate, has been synthesized and characterized by elemental analysis, IR spectral and X-ray powder diffraction (XRD) studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound decomposed mainly to Mn2O3, MnO2 and NiO at ca.1000°C, via. the formation of several intermediates. DSC study in nitrogen upto 500°C showed the endothermic decomposition. The tentative mechanism for the thermal decomposition in air is proposed.  相似文献   

8.
The thermal decomposition of the binuclear Pt(II) complexes with acetate, propionate, valerate and izovalerate ligands were studied by TG and DTA techniques. The Pt(II) complex with acetic acid (PtAA) was stable up to 343.15 K, Pt(II) complex with propionic acid (PtPrA) was stable up to 323.15 K, Pt(II) complex with valeric acid (PtVA) was stable up to T=313.15 K and Pt(II) complex with isovaleric acid (PtIvA) was stable up to 408.15 K. The PtAA complex was investigated again after a year by thermogravimetric analysis. After the thermal decomposition of the Pt(II) complexes with carboxylic acids, only in the PtVA complex and PtAA complex (investigated after a year) the final residue contains only platinum, while in the rest complexes the solid residue was a mixture of platinum and platinum carbides (PtC2, Pt2C3).  相似文献   

9.
苯甲酸钡的热分解机理   总被引:4,自引:0,他引:4  
碱土金属苯甲酸盐是一类比较稳定的化合物,对其已有的报道主要涉及含结晶水碱土金属苯甲酸盐的红外光谱和热分解过程,这些热分解仅涉及失水过程和固体残留物的分析[1~3]。我们首次用半固相法合成了苯甲酸钡,并对无水苯甲酸钡在氮气中热分解的气相凝聚物进行了分析...  相似文献   

10.
By means of the combined use of scanning electron microscopy+energy dispersive spectrometry(SEM+EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential thermal analysis (DTA) and thermogravimetry (TG), the thermal decomposition of gypsum and gypsum bonded investment used for casting jewellery products has been studied in order to gain a further insight into the origin of the gas porosity in gold-based alloys produced via lost wax casting. The occurrence of the defect is related to the thermal decomposition of CaSO4 that constitutes with silica the investment material and the decomposition of which takes place at a temperature very close to the casting temperature of some typical gold alloys. The decrease of the thermal decomposition temperature of gypsum is induced by the presence of silica and is related to the surface acid-base interaction between SiO2 and CaSO4. On the base of these results, the solid state thermal decomposition of calcium sulphate in the presence of other metal oxides characterised by different acid-base nature has been investigated and a correlation between the surface acid-base properties measured as isoelectric point of the solid surface (IEPS) and via XPS analysis and the temperature of CaSO4 thermal decomposition is observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Simultaneous TG/DTA has been used to study the thermal decomposition of binary compositions containing polytetrafluoroethene (PTFE) with silicon (Si), calcium silicide (CaSi2), ferrosilicon (FeSi) or iron (Fe) powders. In nitrogen and under dynamic heating program the thermal decomposition of Si/PTFE and CaSi2/PTFE is an exothermic process. The other two compositions decompose endothermically. In each case the decomposition reactions show first-order kinetics but only iron does not change considerably the kinetics of PTFE depolymerization. The constants of the decomposition rate at 850 K for silicon containing reducers are about four times higher than those of PTFE and Fe/PTFE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Combined TG/DTA techniques have been used to study the thermal decomposition of R3PAuCN (where Ris ethyl, cyclohexyl, o-tolyl, m-tolyl, p-tolyl, allyl, cyanoethyl,1-naphthyl and phenyl) complexes. It was observed that all of these complexes underwant decomposition cum redox reactions in the range of 200–600oC with evolution of both transligands, which are phosphine and cyanide, leaving metallic gold as a residue. The thermal decomposition of o-Tol3PAuCN has revealed that this is a stepwise process. In the first step decomposition takes place with evolution of phosphine and generation of AuCN, which in second step undergoes a redox reaction to produce metallic gold. The DTA curves have also confirmed these results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Strontium(II) bis (oxalato) strontium(II) trihydrate, Sr[Sr(C2O4)2]·3H2O and mercury(II) bis (oxalato) mercurate(II) hexahydrate, Hg[Hg(C2O4)2]·6H2O have been synthesized and characterized by elemental analysis, reflectance and IR spectral studies. Thermal decomposition studies (TG, DTG and DTA) in air showed SrCO3 was formed at ca. 500°C through the formation of transient intermediate of a mixture of SrCO3 and SrC2O4 around 455°C. Sharp phase transition from γ-SrCO3 to β-SrCO3 indicated by a distinct endothermic peak at 900°C in DTA. Mercury(II) bis (oxalato) mercurate(II) hexahydrate showed an inclined slope followed by surprisingly steep slope in TG at 178°C and finally 98.66% of weight loss at 300°C. The activation energies (E *) of the dehydration and decomposition steps have been calculated by Freeman and Carroll and Flynn and Wall's method and compared with the values found by DSC in nitrogen. A tentative reaction mechanism for the thermal decomposition of Sr[Sr(C2O4)2]·3H2O has been proposed.  相似文献   

14.
Summary Prediction of the thermal decomposition pathway of the metal complexes is very important from the theoretical and experimental point of view to determine the properties and structural differences of complexes. In the prediction of the decomposition pathways of complexes, besides the thermal analysis techniques, some ancillary techniques e.g. mass spectroscopy is also used in recent years. In the light of the molecular structures and fragmentation components, it is believed that the thermal decomposition pathway of most molecules is similar to the ionisation mechanism occurring in the mass spectrometer ionisation process. In this study, the thermal decomposition pathway of [Ni(dmen)2(H2O)2](acs)2 complex have been predicted by the help of thermal analysis data (TG, DTG and DTA) and mass spectroscopic fragmentation pattern. The complex was decomposed in four stages: a) dehydration between 84-132°C, b) loss of N,N'-dimethylethylenediamine (dmen) ligand, c) decomposition of remained dmen and acesulfamato (acs) by releasing SO2, d) burning of the organic residue to resulting in NiO. The volatile products observed in the thermal decomposition process were also observed in the mass spectrometer ionisation process except molecular peak and it was concluded that the ionisation and thermal decomposition pathway of the complex resembles each other.  相似文献   

15.
The thermal decomposition studies on 4-methylpiperazine-1-carbodithioic acid ligand (4-MPipzcdtH) and its complexes, viz. [M(4-MPipzcdtH)n](ClO4)n (M=Fe(III) when n=3; M=Co(II), Cu(II) when n=2) and [Zn(4-MPipzcdtH)2]Cl2 have been carried out using non-isothermal techniques (TG and DTA). Initial decomposition temperatures (IDT), indicate that thermal stability is influenced by the change of central metal ion. Free acid ligand exhibits single stage decomposition with a sharp DTA endotherm. Complexes, [M(4-MPipzcdtH)n](ClO4)n undergo single stage decomposition with detonation and give rise to very sharp exothermic DTA curves while the complex [Zn(4-MPipzcdtH)2]Cl2 shows three-stage decomposition patterns. The kinetic and thermodynamic parameters, viz. the energy of activation E, the frequency factor A, entropy of activation S and specific rate constant k, etc. have been evaluated from TG data using Coats and Redfern equation. Based upon the results of the differential thermal analysis study, the [M(4-MPipzcdtH)n](ClO4)n complexes have been found to possess characteristic of high energy materials.  相似文献   

16.
In the present work, thermal degradation behaviors of the Zn (II), Cd(II), and Hg(II) coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) (fbpmpc) have been investigated by using thermogravimetric (TG) analysis, differential thermal analysis (DTA) and derivative thermogravimetry (DTG) analysis under non-isothermal conditions in nitrogen atmosphere at multiple heating rates. TG–DTA study noteworthy inferred the presence of lattice water in outer sphere of all the polymers. The decomposition was carried out in three-four well-separated stages where involved the loss of water molecules in the first step followed by organic ligand. Furthermore, the kinetics and thermodynamic stabilities of multi-steps thermal degradation were evaluated. The activation energy (Ea), order of reaction (n), Arrhenius factor (A), enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) of coordination polymers were obtained by using the Coats–Redfern (CR) method. Ultimately, based on initial, half and final decomposition temperature, and kinetics parameters values the orders of thermal stability were estimated.  相似文献   

17.
The complexity of the processes occurring during cobalt oxalate dihydrate (COD) decomposition indicates that an interpretation of the mechanism based only on the TG curve is of little value. Mass change alone does not allow deeper insight into all of the potential primary and secondary reactions that could occur. The observed mass changes (TG) and thermal effects (DTA/DSC) are a superposition of several phenomena and thus do not necessarily reflect COD decomposition alone. Investigation of the mechanism of decomposition requires the application of different simultaneous techniques that allow the qualitative and quantitative determination of the composition of the gaseous products. Composition of the solid and gaseous products of COD decomposition and heats of dehydration and oxalate decomposition were determined for inert, oxidizing and hydrogen-containing atmospheres. Contrary to previous suggestions about the mechanism of cobalt oxalate decomposition, the solid product formed during decomposition in helium contains not only metallic Comet, but also a substantial amount of CoO (ca 13 mol%). In all atmospheres, the composition of the primary solid and gaseous products changes as a result of secondary gas-solid and gas-gas reactions, catalyzed by freshly formed Comet. The course of the following reactions has been investigated under steady-state and transient conditions characteristic for COD decomposition: water gas shift, Fischer-Tropsch, CO disproportionation, CoO reduction by CO and H2, Comet oxidation under rich and lean oxygen conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) techniques were used for the characterization the thermal degradation of loratadine, ethyl-4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidine)-1-piperidinecarboxylate. TG analysis revealed that the thermal decomposition occurs in one step in the 200–400°C range in nitrogen atmosphere. DTA and DSC curves showed that loratadine melts before the decomposition and the decomposition products are volatile in nitrogen. In air the decomposition follows very similar profile up to 300°C, but two exothermic events are observed in the 170–680°C temperature range. Flynn–Wall–Ozawa method was used for the solid-state kinetic analysis of loratadine thermal decomposition. The calculated activation energy (E a) was 91±1 kJ mol–1 for α between 0.02 and 0.2, where the mass loss is mainly due to the decomposition than to the evaporation of the decomposition products.  相似文献   

19.
The effect of heating on four chemically synthesized polyanilines, three of which were doped by HCI, H2SO4, HCIO4, and one sample which was dedoped, was investigated. The structural variations during thermal decomposition were studied by real-time synchrotron radiation diffractometry and correlated with mass spectrometry (MS), thermal gravimetry (TG), and differential thermal analysis (DTA). These macroscopic and microscopic techniques were combined in order to shed more light on the role played by the water and the counteranion molecules on the structure of doped polyaniline. Evidence for two H2O fractions was found for HCI-doped polyaniline. Chain degradation was observed for HCIO4 and H2SO4-doped polyaniline. The results indicate that intermediate sulphonation of polymer chains occurs in the latter case.  相似文献   

20.
This work presents a study of the thermal decomposition of commercial vegetable oils and of some of their thermal properties by termogravimetry (TG), derivative termogravimetry (DTG) and by differential thermal analysis (DTA). Canola, sunflower, corn, olive and soybean oils were studied. A simultaneous SDT 2960 TG/DTA from TA Instruments was used, with a heating rate of 10 K min-1 from 30 to 700°C. A flow of 100 mL min-1 of air as the purge gas was used in order to burnout the oils during analysis to estimate their heat of combustion. From the extrapolated decomposition onset temperatures obtained from TG curves, it can be seen that corn oil presents the highest thermal stability (306°C), followed by the sunflower one (304°C). Olive oil presents the lowest one (288°C). The heat of combustion of each oil was estimated from DTA curves, showing the highest value for the olive oil. Except for corn oil, which presents a significantly different thermal decomposition behavior than the other oils, a perfect linear correlation is observed, with negative slope, between the heat of combustion of an oil and its respective extrapolated onset temperature of decomposition in air. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号