首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We present a new thermodynamic integration method that directly connects the vapor and solid phases by a reversible path. The thermodynamic integration in the isothermal-isobaric ensemble yields the Gibbs free energy difference between the two phases, from which the sublimation temperature can be easily calculated. The method extends to the binary mixture without any modification to the integration path simply by employing the isothermal-isobaric semigrand ensemble. The thermodynamic integration, in this case, yields the chemical potential difference between the solid and vapor phases for one of the components, from which the binary sublimation temperature can be calculated. The coexistence temperatures predicted by our method agree well with those in the literature for single component and binary Lennard-Jones systems.  相似文献   

2.
We present a detailed comparison of computational efficiency and precision for several free energy difference (DeltaF) methods. The analysis includes both equilibrium and nonequilibrium approaches, and distinguishes between unidirectional and bidirectional methodologies. We are primarily interested in comparing two recently proposed approaches, adaptive integration, and single-ensemble path sampling to more established methodologies. As test cases, we study relative solvation free energies of large changes to the size or charge of a Lennard-Jones particle in explicit water. The results show that, for the systems used in this study, both adaptive integration and path sampling offer unique advantages over the more traditional approaches. Specifically, adaptive integration is found to provide very precise long-simulation DeltaF estimates as compared to other methods used in this report, while also offering rapid estimation of DeltaF. The results demonstrate that the adaptive integration approach is the best overall method for the systems studied here. The single-ensemble path sampling approach is found to be superior to ordinary Jarzynski averaging for the unidirectional, "fast-growth" nonequilibrium case. Closer examination of the path sampling approach on a two-dimensional system suggests it may be the overall method of choice when conformational sampling barriers are high. However, it appears that the free energy landscapes for the systems used in this study have rather modest configurational sampling barriers.  相似文献   

3.
We introduce a straightforward, single-ensemble, path sampling approach to calculate free energy differences based on Jarzynski's relation. For a two-dimensional "toy" test system, the new (minimally optimized) method performs roughly one hundred times faster than either optimized "traditional" Jarzynski calculations or conventional thermodynamic integration. The simplicity of the underlying formalism suggests the approach will find broad applicability in molecular systems.  相似文献   

4.
Using the path integral formalism or the Feynman-Hibbs approach, various expressions for the free energy of quantization for a molecular system in the condensed phase can be derived. These lead to alternative methods to directly compute quantization free energies from molecular dynamics computer simulations, which were investigated with an eye to their practical use. For a test system of liquid neon, two methods are shown to be most efficient for a direct evaluation of the excess free energy of quantization. One of them makes use of path integral simulations in combination with a single-step free energy perturbation approach and was previously reported in the literature. The other method employs a Feynman-Hibbs effective Hamiltonian together with the thermodynamic integration formalism. However, both methods are found to give less accurate results for the excess free energy of quantization than the estimate obtained from explicit path integral calculations on the excess free energy of the neon liquid in the classical and quantum mechanical limit. Suggestions are made to make both methods more accurate.  相似文献   

5.
Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations.  相似文献   

6.
Transition path sampling is an innovative method for focusing a molecular dynamics simulation on a reactive event. Although transition path sampling methods can generate an ensemble of reactive trajectories, an initial reactive trajectory must be generated by some other means. In this paper, the authors have evaluated three methods for generating initial reactive trajectories for transition path sampling with ab initio molecular dynamics. The authors have tested each of these methods on a set of chemical reactions involving the breaking and making of covalent bonds: the 1,2-hydrogen elimination in the borane-ammonia adduct, a tautomerization, and the Claisen rearrangement. The first method is to initiate trajectories from the potential energy transition state, which was effective for all reactions in the test set. Assigning atomic velocities found using normal mode analysis greatly improved the success of this method. The second method uses a high temperature molecular dynamics simulation and then iteratively reduces the total energy of the simulation until a low temperature reactive trajectory is found. This was effective in generating a low temperature trajectory from an initial trajectory run at 3000 K of the tautomerization reaction, although it failed for the other two. The third uses an orbital based bias potential to find a reactive trajectory and uses this trajectory to initiate an unbiased trajectory. The authors found that a highest occupied molecular orbital-lowest unoccupied molecular orbital bias could be used to find a reactive trajectory for the Claisen rearrangement, although it failed for the other two reactions. These techniques will help make it practical to use transition path sampling to study chemical reaction mechanisms that involve bond breaking and forming.  相似文献   

7.
Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm‐enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT‐TI) method. Free energy changes for transitions computed by using IT‐TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm‐enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange.  相似文献   

8.
Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004)]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.  相似文献   

9.
We present a method to analyze biased molecular-dynamics and Monte Carlo simulations, also known as umbrella sampling. In the limiting case of a strong bias, this method is equivalent to thermodynamic integration. It employs only quantities with easily controllable equilibration and greatly reduces the statistical errors compared to the standard weighted histogram analysis method. We show the success of our approach for two examples, one analytic function, and one biological system.  相似文献   

10.
The transition path sampling (TPS) method is a powerful approach to study chemical reactions or transitional properties on complex potential energy landscapes. One of the main advantages of the method over potential of mean force methods is that reaction rates can be directly accessed without knowledge of the exact reaction coordinate. We have investigated the complementary nature of these two differing approaches, comparing transition path sampling with the weighted histogram analysis method to study a conformational change in a small model system. In this case study, the transition paths for a transition between two rotational conformers of a model disaccharide molecule, methyl beta-D-maltoside, were compared with a free energy surface constrained by the two commonly used glycosidic (phi,psi) torsional angles. The TPS method revealed a reaction channel that was not apparent from the potential of mean force method, and the suitability of phi and psi as reaction coordinates to describe the isomerization in vacuo was confirmed by examination of the transition path ensemble. Using both transition state theory and transition path sampling methods, the transition rate was estimated. We have estimated a characteristic time between transitions of approximately 160 ns for this rare isomerization event between the two conformations of the carbohydrate. We conclude that transition path sampling can extract subtle information about the dynamics not apparent from the potential of mean force method. However, in calculating the reaction rate, the transition path sampling method required 27.5 times the computational effort than was needed by the potential of mean force method.  相似文献   

11.
We propose a free energy calculation method for receptor–ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host–guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein–ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
A hybrid quantum/classical path integral Monte Carlo (QC-PIMC) method for calculating the quantum free energy barrier for hydrogen transfer reactions in condensed phases is presented. In this approach, the classical potential of mean force along a collective reaction coordinate is calculated using umbrella sampling techniques in conjunction with molecular dynamics trajectories propagated according to a mapping potential. The quantum contribution is determined for each configuration along the classical trajectory with path integral Monte Carlo calculations in which the beads move according to an effective mapping potential. This type of path integral calculation does not utilize the centroid constraint and can lead to more efficient sampling of the relevant region of conformational space than free-particle path integral sampling. The QC-PIMC method is computationally practical for large systems because the path integral sampling for the quantum nuclei is performed separately from the classical molecular dynamics sampling of the entire system. The utility of the QC-PIMC method is illustrated by an application to hydride transfer in the enzyme dihydrofolate reductase. A comparison of this method to the quantized classical path and grid-based methods for this system is presented.  相似文献   

13.
The calculation of free-energy barriers by umbrella sampling and many other methods is hampered by the necessity for an a priori choice of the reaction coordinate along which to sample. We avoid this problem by providing a method to search for saddle points on the free-energy surface in many coordinates. The necessary gradients and Hessians of the free energy are obtained by multidimensional umbrella integration. We construct the minimum free-energy path by following the gradient down to minima on the free-energy surface. The change of free energy along the path is obtained by integrating out all coordinates orthogonal to the path. While we expect the method to be applicable to large systems, we test it on the alanine dipeptide in vacuum. The minima, transition states, and free-energy barriers agree well with those obtained previously with other methods.  相似文献   

14.
A new molecular dynamics method for calculating free energies associated with transformations of the thermodynamic state or chemical composition of a system (also known as alchemical transformations) is presented. The new method extends the adiabatic dynamics approach recently introduced by Rosso et al. [J. Chem. Phys. 116, 4389 (2002)] and is based on the use of an additional degree of freedom, lambda, that is used as a switching parameter between the potential energy functions that characterize the two states. In the new method, the coupling parameter lambda is introduced as a fictitious dynamical variable in the Hamiltonian, and a system of switching functions is employed that leads to a barrier in the lambda free energy profile between the relevant thermodynamic end points. The presence of such a barrier, therefore, enhances sampling in the end point (lambda = 0 and lambda = 1) regions which are most important for computing relevant free energy differences. In order to ensure efficient barrier crossing, a high temperature T(lambda) is assigned to lambda and a fictitious mass m(lambda) is introduced as a means of creating an adiabatic separation between lambda and the rest of the system. Under these conditions, it is shown that the lambda free energy profile can be directly computed from the adiabatic probability distribution function of lambda without any postprocessing or unbiasing of the output data. The new method is illustrated on two model problems and in the calculation of the solvation free energy of amino acid side-chain analogs in TIP3P water. Comparisons to previous work using thermodynamic integration and free energy perturbation show that the new lambda adiabatic free energy dynamics method results in very precise free energy calculations using significantly shorter trajectories.  相似文献   

15.
We describe a method for calculating free energies and chemical potentials for molecular models of gas hydrate systems using Monte Carlo simulations. The method has two components: (i) thermodynamic integration to obtain the water and guest molecule chemical potentials as functions of the hydrate occupancy; (ii) calculation of the free energy of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state. The approach is applicable to any classical molecular model of a hydrate. We illustrate the methodology with an application to the structure-I methane hydrate using two molecular models. Results from the method are also used to assess approximations in the van der Waals-Platteeuw theory and some of its extensions. It is shown that the success of the van der Waals-Platteeuw theory is in part due to a cancellation of the error arising from the assumption of a fixed configuration of water molecules in the hydrate framework with that arising from the neglect of methane-methane interactions.  相似文献   

16.
This paper follows the "defense" of the Good-van Oss-Chaudhury (GvOC) acid-base approach made in Part I and carries out a detailed analysis of the Zisman critical surface energy and, mainly, of the Neumann equation-of-state (EQS) theory. The analysis is made on both a "practical" and a theoretical basis, trying to highlight the acceptable fitting results of axisymmetric drop shape analysis (ADSA) methods and their independence of the assumed thermodynamic foundations of EQS. Some new and original criticisms of the EQS approach are raised and it is shown that other purely semiempirical models, represented by different fitting equations with the same number of parameters, can represent the data measured by ADSA method with the same goodness as EQS. The equation of state appears as one of many semiempirical approaches for the evaluation of surface free energy of solids. Independent of the previous analysis, the criteria used in ADSA measurements are evaluated and some comments made on them.  相似文献   

17.
In this short paper, we introduce an approximate method for the quick estimate of rate constants based on a simple sampling method of reactive transition paths over high energy barriers. It makes use of the previously introduced accelerated molecular dynamics (MD) simulation method to generate initial points for trajectory shooting. The accelerated MD simulations, although with the loss of real dynamics, lead to a quick calculation of thermodynamic properties and at the same time produce an ensemble of configurations with an enhanced sampling over the phase space that is more "reactive." The forward/backward trajectory shooting as that used in the transition path sampling method is then initiated from the configurations obtained from accelerated MD simulations to generate transition paths on the original unbiased potential. This method selectively enhances sampling of successful trajectories and at the same time accelerates significantly the calculation of rate constants.  相似文献   

18.
The authors present an integrated approach to "alchemical" free energy simulation, which permits efficient calculation of the free energy difference on rugged energy surface. The method is designed to obtain efficient canonical sampling for rapid free energy convergence. The proposal is motivated by the insight that both the exchange efficiency in the presently designed dual-topology alchemical Hamiltonian replica exchange method (HREM), and the confidence of the free energy determination using the overlap histogramming method, depend on the same criterion, viz., the overlaps of the energy difference histograms between all pairs of neighboring states. Hence, integrating these two techniques can produce a joint solution to the problems of the free energy convergence and conformational sampling in the free energy simulations, in which lambda parameter plays two roles to simultaneously facilitate the conformational sampling and improve the phase space overlap for the free energy determination. Specifically, in contrast with other alchemical HREM based free energy simulation methods, the dual-topology approach can ensure robust conformational sampling. Due to these features (a synergistic solution to the free energy convergence and canonical sampling, and the improvement of the sampling efficiency with the dual-topology treatment), the present approach, as demonstrated in the model studies of the authors, is highly efficient in obtaining accurate free energy differences, especially for the systems with rough energy landscapes.  相似文献   

19.
Based on a multiobjective optimization framework, we develop a new quadratic string method for finding the minimum-energy path. In the method, each point on the minimum-energy path is minimized by integration in the descent direction perpendicular to path. Each local integration is done on a quadratic surface approximated by a damped Broyden-Fletcher-Goldfarb-Shanno updated Hessian, allowing the algorithm to take many steps between energy and gradient calls. The integration is performed with an adaptive step-size solver, which is restricted in length to the trust radius of the approximate Hessian. The full algorithm is shown to be capable of practical superlinear convergence, in contrast to the linear convergence of other methods. The method also eliminates the need for predetermining such parameters as step size and spring constants, and is applicable to reactions with multiple barriers. The effectiveness of this method is demonstrated for the Muller-Brown potential, a seven-atom Lennard-Jones cluster, and the enolation of acetaldehyde to vinyl alcohol.  相似文献   

20.
An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号