首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
使用溶胶-凝胶法制备了Er3+单掺及Er3+/Yb3+共掺La2TiO5荧光粉体样品。经过1 100 ℃下3 h的煅烧,得到了较好的微晶。X射线粉末衍射测试表明样品中不含杂质相。扫描电镜观察表明样品颗粒范围为100~300 nm。紫外激发光谱中,在250~320 nm范围内出现Er离子和临近配位氧离子之间强烈的电荷转移跃迁峰,在350~500 nm出现Er离子f-f跃迁尖锐的吸收峰。在378 nm激发下,Er离子发射强烈的特征绿光(546 nm, 4S3/2-4I5/2),当Er离子物质的量分数达到1%,发射峰强度达到最大。在980 nm激发下的上转换光谱中,Yb离子的共掺杂有效的敏化上转换发光强度。详细讨论了样品的上下转换发光机理及相应能量传递过程。同时测试了样品的荧光衰减和量子产率。  相似文献   

2.
通过在不同pH值下的简易水热法合成不同Yb3+离子(nYB3+/nLu3+=5%~15%)和Er3+离子(nEr3+/nLu3+=1%~5%)掺杂浓度的LuF3∶Yb3+,Er3+微晶荧光粉。发现pH值对正交相LuF3∶Yb3+,Er3+的合成起着关键作用。在980 nm激发下,LuF3∶Yb3+,Er3+荧光体呈现出以523 nm(2H11/24I15/2)和539 nm(4S3/24I15/2)为中心的强绿光上转换(UC)发射以及以660 nm(4F9/24I15/2)为中心弱红光上转换发射。通过使用X射线衍射(XRD)和光致发光(PL)分析测定了最强发射强度的Er3+和Yb3+的最佳掺杂浓度。浓度依赖性研究表明,达到最强的绿光上转换发光时最佳掺杂浓度为10% Yb3+,2% Er3+。通过改变泵浦功率来研究LuF3∶Yb3+,Er3+荧光粉UC发光机制。通过980 nm二极管激光器在293~573 K的范围内研究了在523和539 nm处的2个绿光UC发射带的荧光强度比(FIR)的温度依赖性,发现在490 K得到最大灵敏度约为15.3×10-4 K-1。这表明LuF3∶Yb3+,Er3+荧光体可应用于具有高灵敏度的光学温度传感器。  相似文献   

3.
采用高温熔融法制备了Tm3+/Er3+/Ho3+共掺的铋硅酸盐50SiO2-40Bi2O3-5AlF3-5BaF2玻璃。研究了在808 nm激光器(Laser Diode)激发下Tm3+/Er3+/Ho3+共掺的铋硅酸盐在2 060 nm处的发光性能,同时测试及分析了该铋硅酸盐玻璃的差热特性、吸收光谱及荧光光谱。根据吸收光谱以及Judd-Oflet理论,计算了Ho3+的Judd-Oflet强度参数Ωtt=2,4,6)以及Tm3+/Er3+/Ho3+相应的吸收截面。铋硅酸盐玻璃中,Tm2O3、Er2O3和Ho2O3掺杂浓度分别为0.75%、1.0%和0.5%时,2 060 nm处Ho3+5I75I8发射峰强度达到最大。对Tm3+/Er3+/Ho3+ 3种离子的光谱性质和离子间可能存在的能量传递也做了分析。Ho3+在1 953 nm处的最大吸收截面σabs为9.08×10-21 cm2,在2 060 nm处的最大发射截面σem为11.68×10-21 cm2,辐射寿命τmea为2.75 ms,具有良好的增益效应σemτ(3.212×10-20 cm-2·ms)。  相似文献   

4.
采用高温固相合成法制备了Er3+,Yb3+双掺杂的GdOCl荧光材料,并研究其荧光性能。该双掺杂体系荧光粉吸收紫外光,发出红色(619 nm)和近红外(~979 nm)荧光。在这些荧光材料中,1个Er3+离子可以有效将其能量转移给2个Yb3+离子。通过改变Yb3+掺杂浓度,对比Gd0.998 5-yOCl:0.0015Er3+,yYb3+中的Er3+的发射光谱和不同检测波长的荧光寿命变化特点,对Er3+-Yb3+ 发生量子剪裁的能级进行分析和指认,并计算了能量转化效率(η)和量子效率(Q)。正是由于具备这种荧光性能,该荧光材料体系有望在荧光太阳能收集器以及军事和医学的红外显示和探测技术中获得应用。  相似文献   

5.
采用高温固相法合成了绿色荧光粉Ca3Y2Si3O12:Tb3+。XRD检测结果显示,荧光粉主晶相为Ca3Y2Si3O12,属单斜晶系。荧光光谱分析表明:Ca3Y2Si3O12:Tb3+硅酸盐荧光粉可以被370nm的近紫外光激发,发射绿光,主发射峰位于490nm(5D47F6),544nm(5D47F5),585nm(5D47F4)和621nm(5D47F3)。用544nm最强峰监测,得到主激发峰位于370nm的激发光谱,此光谱覆盖了300~450nm的波长范围。研究了煅烧条件、掺杂浓度及Ce3+共掺杂对荧光粉发光性能的影响:在1400℃下经二次煅烧6h得到的样品的发光性能最佳,Tb3+离子的最佳掺杂浓度为20mol%,Ce3+离子共掺杂能够提高荧光粉的发光强度,其最佳掺杂量为4mol%,说明存在Ce3+→Tb3+的能量传递。  相似文献   

6.
采用高温固相法制备了PbF2:Er3+,Yb3+双向转换荧光粉。通过X射线粉末衍射分析(XRD)、结构精修分析、功率-强度测试和荧光光谱分析对样品进行了表征。通过X射线衍射和精修结果分析了样品的相组成和晶胞参数的变化。荧光光谱分析表明,在紫外光(378 nm)和不同波长的红外光(808、980、1 064和1 550 nm)激发下,样品在540~550 nm范围内具有强绿光发射和在650~660 nm范围内的弱红光发射。最后,通过强度-功率测试讨论了样品在不同波长的红外光下激发的上转换发光机理,并分析了在378 nm激发的下转换发光机理。  相似文献   

7.
周诗晖  王喆  张占辉 《无机化学学报》2023,39(12):2311-2316
采用高温固相法制备了2个系列的荧光粉样品:Ba2-xZnGe2O7xBi3+(系列Ⅰ)和Ba1.994-yKyZnGe2O7:0.006Bi3+(系列Ⅱ)。X射线衍射(XRD)测试结果表明,少量Bi3+、K+的掺杂不会明显改变材料的物相结构。样品的荧光光谱测试结果表明,虽然2个系列样品的发光光谱都随组成成分变化有少量变化,但发光颜色基本上均为黄绿色。在358 nm的激发下,荧光粉的发射光谱呈现一个峰值在500 nm的宽发射带,归属于3P11S0能级跃迁。在500 nm监测下,荧光粉的最强激发峰位于358 nm,归属于1S03P1能级跃迁,此外还有一个位于320 nm的肩峰归属于O2--Bi3+电荷转移带。系列Ⅰ样品的光谱数据结果指出,Bi3+的最佳掺杂量x为0.006。在该基质中,Bi3+掺杂取代Ba2+属于不等价取代,会在晶格中产生Ba2+空位或间隙O2-,对材料的发光强度产生负面影响。对此,采用K+与Bi3+协同掺杂起到电荷补偿的作用,填补Ba2+空位或捕获间隙O2-缺陷。空位被填补或间隙被捕获均减少了晶格畸变,从而使发光强度明显提高。系列Ⅱ样品的光谱数据表明,完全电荷补偿的荧光粉样品相比于没有掺K+的样品,其发光强度提高了约2.5倍。  相似文献   

8.
采用微乳液法制备NaLu(WO4)2-x(MoO4)x:8%Eu3+(x=0, 0.5, 1.0, 1.5, 2.0)/y%Eu3+,5%Tb3+(y=1, 3, 5, 7, 9)系列荧光粉.通过X射线衍射(XRD)表征,所制样品的X射线衍射峰与标准卡片PDF#27-0729基本吻合,表明所制的样品为白钨矿结构,属于四方晶系.扫描电镜SEM显示制备的纳米粒子是梭子状的,粒径大约是110 nm.激发发射光谱显示,在Eu3+离子掺杂浓度为8%时,NaLu(WO4)(MoO4):Eu3+发光强度最大.NaLu(WO4)2-x(MoO)x :8%Eu3+(x=0, 0.5, 1.0, 1.5, 2.0)荧光粉在Mo/W比达到1:1(x=1)时发光强度最大,强烈的红光发射表明该材料可用于白光LED材料.该荧光粉在268、394和466 nm波长光激发下分别发出橙红色、黄色和淡黄色光,可以满足不同光色需要.NaLu(WO)(MoO):y%Eu3+,5%Tb3+(y=1, 3, 5, 7, 9)荧光粉,随着y值增大,从绿光区(x=0.278, y=0.514)进入白光区(x=0.356, y=0.373), (x=0.278, y=0.313),同时观察到Tb3+到Eu3+有效能量传递.  相似文献   

9.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

10.
用水热法合成了NaYW2O8∶Ln3+(Ln=Yb/Er and Eu)微米晶,并研究了pH值对微米晶组成、形貌和荧光性质的影响。通过调节微米晶的形貌和结构对微米晶的上转换荧光进行了调控。在NaYW2O8∶Eu3+微米晶的激发光谱中,Eu3+-O2电荷迁移带和W6+-O2- 跃迁与Eu3+离子的f-f激发峰的比值随着微米晶的形貌和结构的不同发生改变。  相似文献   

11.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7∶0.03Eu,y Ce3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7∶0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f 65d1-4f 7跃迁,590~725 nm红光区窄带谱源于Eu3+的5D0-7FJ(J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7∶0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7∶0.03Eu,y Ce3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7∶0.03Eu,0.01Ce3+的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

12.
以尿素为沉淀剂,采用低温水热法结合煅烧过程制备出MgAl2O4∶Er^3+,Yb^3+上转换荧光粉,并对样品的结构、微观形貌及上转换发光性能予以表征。结果表明,随尿素加入量的增大,产物主形貌由六角片状结构向纳米棒状转变,经1100℃煅烧可得纯相镁铝尖晶石结构,且Er^3+和Yb^3+能有效进入MgAl2O4晶格并占据Mg^2+位置形成均匀固溶体。在980 nm光激发下,MgAl2O4∶1.0%(n/n)Er^3+,x%(n/n)Yb^3+(x=0~8.0)荧光粉表现出在524、545 nm处绿光以及658 nm处的强红光发射,红绿光强度均在5.0%(n/n)Yb^3+掺杂时达到最大,但红绿光强度比却在7.0%(n/n)Yb^3+掺杂时达到最大值5.2,这归因于Er^3+-Er^3+之间交叉弛豫(CR)在红光发射过程中所起的重要作用。通过控制荧光粉中Yb^3+的掺杂量,能初步实现对于黄绿光色度的有效调控。  相似文献   

13.
采用熔融晶化法制备Tm~(3+)-Tb~(3+)-Eu~(3+)掺杂含Na_3Gd(PO_4)_2晶相荧光玻璃陶瓷,并对其光学性能进行了研究。利用差示扫描量热分析(DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)等测试,确定了样品的晶相结构和最佳热处理条件(740℃/3 h)。在359 nm激发下,Tm_2O_3、Tb_4O_7、Eu_2O_3掺杂浓度(物质的量分数)分别为0.2%、0.2%、0.95%时,玻璃陶瓷的色度坐标为(0.333 2,0.318 8),接近标准白光(0.333,0.333)。结合荧光光谱和荧光衰减曲线分析,证实了样品中存在Tm~(3+)→Eu~(3+)、Tb~(3+)→Eu~(3+)的能量传递。  相似文献   

14.
综合ZnO-Al_2O_3-SiO_2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho~(3+)/Yb~(3+)共掺以ZnAl_2O_4为主晶相的ZnO-Al_2O_3-GeO_2-SiO_2系玻璃陶瓷。因[GeO_4]四面体和[SiO_4]四面体都是玻璃网络形成体,讨论了GeO_2取代SiO_2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO_2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho~(3+)/Yb~(3+)掺杂比对样品上转换发光的影响,最终结果表明当Ho~(3+)/Yb~(3+)掺杂比为1∶11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

15.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

16.
采用水热法制备出Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca_9Y(PO4)7基质中引入Ce~(3+),Tb~(3+)离子对发光性能的影响规律。研究发现因Tb~(3+)离子自身能量交叉驰豫的存在,使得单掺Tb~(3+)时,通过调节Tb~(3+)离子的浓度可以实现对发光颜色的控制。同时研究了Ce~(3+)-Tb~(3+)之间的能量传递为电多极相互作用的偶极-四极机制,Ce~(3+)-Tb~(3+)之间最大的能量传递效率为55.6%。Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

17.
史忠祥  卢杨  王晶  关昕  时军  江豪 《无机化学学报》2018,34(11):1975-1982
应用传统水热法合成出具有四方白钨矿结构的NaY(WO_4)_2微米颗粒及一系列Er~(3+)/Yb~(3+)共掺杂NaY(WO_4)_2上转换荧光粉。利用XRD、SEM、TEM、HRTEM、粒度分布和上转换发光光谱对样品的物相、形貌及上转换发光性能进行分析表征。结果表明,p H值对于制备具有同一形貌的纯相NaY(WO_4)_2微米颗粒发挥重要作用。随着pH值的升高,可以完成从八面体到拟立方体再到片状颗粒的形貌转变。在980 nm近红外光激发下,观测到525及553 nm处的强绿光发射,对应Er~(3+)的~2H_(11/2)→~4I_(15/2)与~4S_(3/2)→~4I_(15/2)跃迁,以及650~680 nm范围内的弱红光发射,对应Er~(3+)的~4F_(9/2)→~4I_(15/2)跃迁,且绿、红光上转换发射均属于双光子过程。此外,通过调节NaY(WO_4)_2∶Er~(3+),Yb~(3+)荧光粉中Yb~(3+)的浓度,可实现对绿光色度的有效控制。  相似文献   

18.
采用高温固相法制备了Sr_3Y(BO_3)_3:xTm~(3+),yDy~(3+)荧光粉,并通过XRD、SEM和荧光光谱仪对样品的物相、微观形貌、发光性能、能量传递机制和CIE色坐标进行了分析。结果表明:Sr_3Y(BO_3)_3:xTm~(3+)荧光粉在监测波长为359 nm时发射蓝光,Tm~(3+)的浓度淬灭点为x=0.08;在Sr_3Y(BO_3)_3:0.08Tm~(3+),yDy~(3+)荧光粉中,随着Dy~(3+)掺杂浓度的增加,Tm~(3+)的发光强度降低而Dy~(3+)发光强度却先增加后降低,Dy~(3+)的浓度淬灭点为y=0.1;通过改变Dy~(3+)掺杂浓度或改变激发光的波长,均可实现发射光的颜色可调;在Tm~(3+)-Dy~(3+)离子之间存在能量传递。当Dy~(3+)掺杂浓度(物质的量分数)为0.15时能量传递效率达75.14%,能量传递机制为电偶极-电偶极相互作用。  相似文献   

19.
采用熔融晶化法制备了主晶相为SrF_2的Er~(3+)-Yb~(3+)共掺透明氟氧化物玻璃陶瓷,利用DSC、XRD、SEM、UV-Vis-NIR和荧光光谱对样品的结构、形貌、发光性能进行了测试与表征。研究表明:该体系玻璃最佳热处理温度为620℃,最佳热处理时间为2h,并讨论了Yb~(3+)不同掺杂浓度对Er~(3+)-Yb~(3+)共掺玻璃陶瓷样品上转换发光性能的影响,确定Er~(3+)-Yb~(3+)最佳掺杂浓度比为1∶7,同时观察到了明亮的绿光(522,540 nm)和较弱的红光(656 nm),对Er~(3+)和Yb~(3+)之间的能量传递过程进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号