首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adsorption of methylamine on highly siliceous MFI, FAU and FER-type zeolites was investigated withXRD, FT-IR, Raman, ^13C and ^29Si MAS NMR, and compared with the adsorption of methanol. As the adsorption of the amine, the relative intensity of XRD peaks of the zeolites has been changed significantly, the high-resolution ^29Si MAS NMR peaks have been broadened and shifted to low field, and the resonance of Si-OH groups has appeared. The vibration of N-H has been shifted to low frequency and C-N vibration moved to high frequency in the IR spectra, and the ^13C resonance peak broadened and shifted to high field for the adsorbed amine. The facts reveal an associating interaction between the perfect framework of the zeolites and the adsorbed methylamine with hydrogen bonds, leading to the formation of Si-OH groups and the high desorption temperature of the methylamine from the zeolites.  相似文献   

2.
The effect of electric current on hydrogen adsorption on an aluminum nanowire surface is studied by using nonequilibrium Green's function method. We choose the models studied in the previous work of one of the authors as an aluminum nanowire model and a hydrogen-adsorbed one. These nanowire models have conductive ability, because the aluminum part of these models is metallic. It is confirmed that electric current affects the strength of the adsorption of hydrogen atoms, and the change of the bonding of hydrogen to aluminum nanowire surface is larger for larger current. However, the change of the chemical bonding is negligibly small within the bias voltage ≤0.5 V.  相似文献   

3.
The adsorption of benzene from benzene/n-alkane mixtures was studied by two types of nano Beta zeolite with Si/Al ratios of 11.5 and 24.5. Benzene was adsorbed into benzene/n-hexane and n-heptane mixtures which had 0.5% up to 10% mole fraction of benzene using batch technique in the ambient temperature. The nano Beta zeolite has active sites on its surface, which have interaction with π electron in benzene, and this can increase the heat of adsorption. The Si/Al ratio defines the number of active sites in the zeolite surface and the heat of adsorption. However, an increase in the active sites of Beta zeolite declines the entropy of adsorption. Therefore, free energy of mixing specifies the potential of adsorption in Beta zeolite.As the results indicated in all mixtures, benzene is adsorbed more than n-hexane and n-heptane into the Beta zeolite surface, which suggests that this type of zeolite has a high separation factor (∼50) for benzene in Beta zeolite (Si/Al = 24.5). Also, Beta zeolite with Si/Al = 24.5 had a greater separation factor than Beta zeolite with Si/Al = 11.5 in similar mixtures.  相似文献   

4.
The density functional theory (DFT) calculation of hydrogen adsorption on tungsten oxides and calculation of the crystal structure of WO3, W20O58, and W18O49 were performed. These calculations suggest that the length of W-O bonds in WO3 are 1.913 Å, the length of 66% W-O bonds in W20O58 is 1.8 to 1.9 Å, and the length of 43.48% W-O bonds in W18O49 is longer than 2.0 Å. The hydrate (WO2[OH]2), as an autocatalyst in the hydrogen reduction process, was found in the particular adsorption configuration of W18O49. The WO3 and W20O58 were completely reduced within 40 to 60 minutes at a temperature of 1000°C and at a hydrogen flow rate of 200 mL/min, while W18O49 was completely reduced within 20 to 40 minutes. The phase composition and micromorphology of raw material and production were studied by both X-ray diffraction analysis (XRD) and FE-SEM technology. The differences of the mechanism of hydrogen adsorption on WO3, W20O58, and W18O49 were explored based on the density functional theory calculation and the hydrogen reduction experiments.  相似文献   

5.
洪新  李云赫  高畅  范博  庞宇莹  张丹  唐克 《燃料化学学报》2018,46(10):1184-1192
合成了一系列不同硅铝比的ZSM-5分子筛,采用XRD、FT-IR、ICP、SEM、NH_3-TPD和N_2吸附-脱附等方法对其进行了表征,研究了不同硅铝比ZSM-5分子筛对模拟柴油中苯胺和吡啶的吸附脱除性能。结果表明,所合成的ZSM-5分子筛均具有典型MFI结构;与合成原料混合物中的硅铝比相比,实际硅铝比稍有降低。ZSM-5分子筛的酸量随硅铝比的增加而降低,硅铝比较小的ZSM-5(1)和ZSM-5(2)的吸附脱除苯胺或吡啶的效果明显优于其他样品,并且所有样品吸附脱除吡啶的效果均优于苯胺。ZSM-5(2)上苯胺和吡啶的吸附等温线符合Langmuir-Freundlich混合模型。  相似文献   

6.
Through the synthesis of 2D MFI zeolite samples of Si/Al ratio ranged from 13 to 74 with inter-crystalline mesoporosity and their reference 3D counterparts, we have systematically studied and revealed the impact of Si/Al ratio on the inter-dependence of core intrinsic properties of structural porosity and acidity. It is apparent that mesopores in the 2D MFI zeolite play a critical role, dictating the accessibility and distribution of specific acid sites. It was found that, compared to their 3D counterparts, the 2D samples possess a three-times larger accessible surface area owing to the mesopores. Although having a slightly lower total number of acid sites, the 2D samples enjoy a higher percentage of accessible strong acid sites and weak Lewis acid sites. Consequently, in three selected liquid phase reactions, which had different acidity demands and molecular diffusion constraints, the 2D samples demonstrated much higher catalytic activities and resistance to deactivation. This study has, for the first time, established the relationship between Si/Al ratio and acidity for the 2D MFI zeolite, thus enabling rational selection of a Si/Al ratio for a targeted application.  相似文献   

7.
Zeolite Y, with a high SiO2/Al2O3 ratio (SAR), plays an important role in fluidized catalytic cracking processes. However, in situ synthesis of zeolite Y with high SARs remains a challenge because of kinetic limitations. Here, zeolite Y with an SAR of 6.35 is synthesized by a hydroxyl radical assisted route. Density-functional theory (DFT) calculations suggest that hydroxyl radicals preferentially enhanced the formation of Si-O-Si bonds, thus leading to an increased SAR. To further increase the SAR, a dealumination process was carried out using citric acid, with a subsequent second-step hydrothermal crystallization, giving an SAR of up to 7.5 while maintaining good crystallinity and high product yield. The resultant zeolite Y shows good performance in cumene cracking. Introduced here is a new strategy for synthesizing high SAR zeolite Y, which is widely used in commercial applications.  相似文献   

8.
Inspired by the concept of superatom via substitutionally doping an Al13 magic cluster, we investigated the H2 molecule dissociation on the doped icosahedral Al12X (X = B, Al, C, Si, P, Mg, and Ca) clusters by means of density functional theory. The computed reaction energies and activation barriers show that the concept of superatom is still valid for the catalysis behavior of doped metal clusters. The hydrogen dissociation behavior on metal clusters characterized by the activation barrier and reaction energy can be tuned by controllable doping. Thus, doped Al12X clusters might serve as highly efficient and low‐cost catalysts for hydrogen dissociation. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

9.
10.
郭向丹  黄世萍  滕加伟     谢在库 《中国化学》2005,23(12):1593-1599
Frameworks of NanZSM-5 type zeolites with various Si/A1 ratios have been constructed and optimized with molecular dynamic quench simulation. The results show that the structure parameters of NanZSM-5 type zeolite, including the bond length and atomic charges, are consistent with those predicted by ab initio cluster calculations. It was also observed that atomic charges of Si atoms were shifted to higher field in NanZSM-5 type zeolite with lower Si/Al ratio. Then, the adsorption of isobutene on NanZSM-5 with various Si/Al ratios has been investigated using grand canonical ensemble Monte Carlo simulation and Cvff-300-1.01 forcefield. The simulated adsorption amount was in good agreement with the experimental data. Based on these facts, the effects of Si/Al ratio on the adsorption amount and adsorption isotherms of isobutene on NanZSM-5 were predicted. The results indicated that Si/Al ratio was important for the adsorption of isobutene and the adsorption amount was decreased as the Si/Al ratio was increased, which can be explained that the atomic charge of Na^+ cation would influence greatly the π electrons of the isobutene double bond due to the Coulomb force. In addition, the adsorption sites of isobutene and interaction energy of isobutene with NanZSM-5 were also discussed.  相似文献   

11.
A 3D porous Zn(II) metal-organic framework {[Zn(2)(H(2)dht)(dht)(0.5)(azpy)(0.5)(H(2)O)]·4H(2)O} (1; H(2)dht=dihydroxyterphthalate, azpy=4,4'-azobipyridine) has been synthesised by employing 2,5-dihydroxyterephthalic acid (H(4)dht), a multidentate ligand and 4,4'-azobipyridine by solvent-diffusion techniques at room temperature. The as-synthesised framework furnishes two different types of channels: one calyx-shaped along the [001] direction and another rectangle-shaped along the [101] direction occupied by guest water molecules. The dehydrated framework, {[Zn(2)(H(2)dht)(dht)(0.5)(azpy)(0.5)]} (1') provides 52.7% void volume to the total unit-cell volume. The pore surfaces of 1' are decorated with unsaturated Zn(II) sites and pendant hydroxyl groups of H(2)dht linker, thereby resulting in a highly polar pore surface. The dehydrated framework 1' shows highly selective adsorption of CO(2) over other gases, such as N(2), H(2), O(2) and Ar, at 195 K. Photoluminescence studies revealed that compound 1 exhibits green emission (λ(max)≈530 nm) on the basis of the excited-state intramolecular proton-transfer (ESIPT) process of the H(2)dht linker; no emission was observed in dehydrated solid 1'. Such guest-induced on/off emission has been correlated to the structural transformation and concomitant breaking and reforming of the OH···OCO hydrogen-bonding interaction in the H(2)dht linker in 1'/1.  相似文献   

12.
A systematic modulation of organic ligands connecting dinuclear paddle-wheel motifs leads to a series of isomorphous metal-organic porous materials that have a three-dimensional connectivity and interconnected pores. Aromatic dicarboxylates such as 1,4-benzenedicarboxylate (1,4-bdc), tetramethylterephthalate (tmbdc), 1,4-naphthalenedicarboxylate (1,4-ndc), tetrafluoroterephthalate (tfbdc), or 2,6-naphthalenedicarboxylate (2,6-ndc) are linear linkers that form two-dimensional layers, and diamine ligands, 4-diazabicyclo[2.2.2]octane (dabco) or 4,4'-dipyridyl (bpy), coordinate at both sides of Zn(2) paddle-wheel units to bridge the layers vertically. The resulting open frameworks [Zn(2)(1,4-bdc)(2)(dabco)] (1), [Zn(2)(1,4-bdc)(tmbdc)(dabco)] (2), [Zn(2)(tmbdc)(2)(dabco)] (3), [Zn(2)(1,4-ndc)(2)(dabco)] (4), [Zn(2)(tfbdc)(2)(dabco)] (5), and [Zn(2)(tmbdc)(2)(bpy)] (8) possess varying size of pores and free apertures originating from the side groups of the 1,4-bdc derivatives. [Zn(2)(1,4-bdc)(2)(bpy)] (6) and [Zn(2)(2,6-ndc)(2)(bpy)] (7) have two- and threefold interpenetrating structures, respectively. The non-interpenetrating frameworks (1-5 and 8) possess surface areas in the range of 1450-2090 m(2)g(-1) and hydrogen sorption capacities of 1.7-2.1 wt % at 78 K and 1 atm. A detailed analysis of the sorption data in conjunction with structural similarities and differences concludes that porous materials with straight channels and large openings do not perform better than those with wavy channels and small openings in terms of hydrogen storage through physisorption.  相似文献   

13.
Zeolite Y, with a high SiO2/Al2O3 ratio (SAR), plays an important role in fluidized catalytic cracking processes. However, in situ synthesis of zeolite Y with high SARs remains a challenge because of kinetic limitations. Here, zeolite Y with an SAR of 6.35 is synthesized by a hydroxyl radical assisted route. Density‐functional theory (DFT) calculations suggest that hydroxyl radicals preferentially enhanced the formation of Si‐O‐Si bonds, thus leading to an increased SAR. To further increase the SAR, a dealumination process was carried out using citric acid, with a subsequent second‐step hydrothermal crystallization, giving an SAR of up to 7.5 while maintaining good crystallinity and high product yield. The resultant zeolite Y shows good performance in cumene cracking. Introduced here is a new strategy for synthesizing high SAR zeolite Y, which is widely used in commercial applications.  相似文献   

14.
The effect of intermolecular hydrogen bonding in the solid state on the molecular structures of imidazole and 1,2,4-triazole has been studied by SCF ab initio molecular orbital calculations at the HF/6-31G* level. The crystals of these species contain endless chains of molecules, connected by unusually strong N-H N hydrogen bonds. Our simulation of the crystal field, based on two simple models, unequivocally shows that hydrogen bond formation not only lengthens the N-H bond but also causes a concerted change in the length of two N-C bonds. The change indicates that the contribution of a polar canonical form to the structure of the molecule increases in going from the gaseous phase to the crystal. This provides a rationale for the strong intermolecular hydrogen bond occurring in the solid state. We have also optimized the geometry of the free molecules at the MP2/6-31G* level, to investigate the effect that correcting for electron correlation has on the equilibrium structure of these systems.  相似文献   

15.
Three different H/D isotope effect in nine H3XH(D)YH3 (X = C, Si, or Ge, and Y = B, Al, or Ga) hydrogen‐bonded (HB) systems are classified using MP2 level of multicomponent molecular orbital method, which can take account of the nuclear quantum nature of proton and deuteron. First, in the case of H3CH(D)YH3 (Y = B, Al, or Ge) HB systems, the deuterium (D) substitution induces the usual H/D geometrical isotope effect such as the contraction of covalent R(C? H(D)) bonds and the elongation of intermolecular R(H(D)Y) and R(CY) distances. Second, in the case of H3XH(D)YH3 (X = Si or Ge, and Y = Al or Ge) HB systems, where H atom is negatively charged called as charge‐inverted hydrogen‐bonded (CIHB) systems, the D substitution leads to the contraction of intermolecular R(H(D)Y) and R(XY) distances. Finally, in the case of H3XH(D)BH3 (X = Si or Ge) HB systems, these intermolecular R(H(D)Y) and R(XY) distances also contract with the D substitution, in which the origin of the contraction is not the same as that in CIHB systems. The H/D isotope effect on interaction energies and spatial distribution of nuclear wavefunctions are also analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

17.
18.
Highly metallic compounds with a quasi‐one‐dimensional structure, the new ternary compounds Ln2Al3Si2 (Ln=Ho, Er, Tm) are synthesized in molten aluminum from lanthanoid and silicon as reagents. Their structures show a formally [Al3Si2]6− framework that contains infinite Al zigzag chains and Si−Si dimers and accommodates rows of Ln3+ ions in parallel tunnels. The compounds exhibit metamagnetic transitions at high magnetic fields.  相似文献   

19.
The effect of changes in the electric field on the structure of protein layers adsorbed at the Pt electrode/solution interface has been investigated by means of admittance measurements. The measurements have been performed over a wide range of d.c. potentials, at different frequencies and amplitudes of the a.c. electric field, and at various pH values. The proteins used, cytochrome C and serum albumin, differ considerably with respect to their molecular masses, points of zero charge and structure stabilities. In contrast to serum albumin, cytochrome C has a relatively strong electric dipole moment. Nevertheless, the results for the two proteins are very similar. Both proteins stay adsorbed at the interface over the d.c. potential range studied and at every pH, irrespective of any electrostatic repulsion. Apparently, for both proteins factors other than electrostatic interactions are dominant in their final binding to the Pt/solution interface. In line with this, no indications were obtained that the orientation of adsorbed cytochrome C molecules is modulated by low-frequency (200–1000 Hz) reversal of the electric field of the interface. A strong a.c. field leads to irreversible structural changes in the adsorption layer for both proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号