首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider local partial clones defined on an uncountable set E having the form Polp(\({\mathfrak{R}}\)), where \({\mathfrak{R}}\) is a set of relations on E. We investigate the notion of weak extendability of partial clones of the type Polp(\({\mathfrak{R}}\)) (in the case of E countable, this coincides with the notion of extendability previously introduced by the author in 1987) which allows us to expand to uncountable sets results on the characterization of Galois-closed sets of relations as well as model-theoretical properties of a relational structure \({\mathfrak{R}}\). We establish criteria for positive primitive elimination sets (sets of positive primitive formulas over \({\mathfrak{R}}\) through which any positive primitive definable relation over \({\mathfrak{R}}\) can be expressed without existential quantifiers) for finite \({\mathfrak{R}}\) as well as for \({\mathfrak{R}}\) having only finite number of positive primitive definable relations of any arity. Emphasizing the difference between countable and uncountable sets, we show that, unlike in the countable case, the characterization of Galois-closed sets InvPol(\({\mathfrak{R}}\)) (that is, all relations which are invariant under all operations from the clone Pol(\({\mathfrak{R}}\)) defined on an uncountable set) cannot be obtained via the application of finite positive primitive formulas together with infinite intersections and unions of updirected sets of relations from \({\mathfrak{R}}\).  相似文献   

2.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

3.
Let M be a left R-module, \({\mathcal{A}}\)be a family of some submodules of M and \({\mathcal{B}}\)be a family of some left R-modules. In this article, we introduce and characterize \({\mathcal{A}}\)-coherent, \({P\mathcal{A}}\), \({F\mathcal{A}}\), M-\({\mathcal{A}}\)-injective (flat) and strongly \({\mathcal{B}}\)-injective (flat) modules, which are generalizations of coherent, PS, FS, M-injective (flat) and strongly M-injective modules, respectively. We extend some known results to this general structure.  相似文献   

4.
Let G be a finite nonabelian group. Bent functions on G are defined by the Fourier transforms at irreducible representations of G. We introduce a dual basis \({\widehat{G}}\), consisting of functions on G determined by its unitary irreducible representations, that will play a role similar to the dual group of a finite abelian group. Then we define the Fourier transforms as functions on \({\widehat{G}}\), and obtain characterizations of a bent function by its Fourier transforms (as functions on \({\widehat{G}}\)). For a function f from G to another finite group, we define a dual function \({\widetilde{f}}\) on \({\widehat{G}}\), and characterize the nonlinearity of f by its dual function \({\widetilde{f}}\). Some known results are direct consequences. Constructions of bent functions and perfect nonlinear functions are also presented.  相似文献   

5.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

6.
For a family of interpolation norms \({\| \cdot \|_{1,2,s}}\) on \({\mathbb{R}^{n}}\), we provide a distribution over random matrices \({\Phi_s \in \mathbb{R}^{m \times n}}\) parametrized by sparsity level s such that for a fixed set X of K points in \({\mathbb{R}^{n}}\), if \({m \geq C s \log(K)}\) then with high probability, \({\frac{1}{2}\| \varvec{x} \|_{1,2,s} \leq \| \Phi_s (\varvec{x}) \|_1 \leq 2 \| \varvec{x} \|_{1,2,s}}\) for all \({\varvec{x} \in X}\). Several existing results in the literature roughly reduce to special cases of this result at different values of s: For s = n, \({\| \varvec{x} \|_{1,2,n}\equiv \| \varvec{x} \|_{1}}\) and we recover that dimension reducing linear maps can preserve the ?1-norm up to a distortion proportional to the dimension reduction factor, which is known to be the best possible such result. For s = 1, \({\| \varvec{x} \|_{1,2,1}\equiv \| \varvec{x} \|_{2}}\), and we recover an ?2/?1 variant of the Johnson–Lindenstrauss Lemma for Gaussian random matrices. Finally, if \({\varvec{x}}\) is s- sparse, then \({\| \varvec{x} \|_{1,2,s} = \| \varvec{x} \|_1}\) and we recover that s-sparse vectors in \({\ell_1^n}\) embed into \({\ell_1^{\mathcal{O}(s \log(n))}}\) via sparse random matrix constructions.  相似文献   

7.
Let \({\mathfrak{M}}\) be a Hilbert C*-module on a C*-algebra \({\mathfrak{A}}\) and let \({End_\mathfrak{A}(\mathfrak{M})}\) be the algebra of all operators on \({\mathfrak{M}}\). In this paper, first the continuity of \({\mathfrak{A}}\)-module homomorphism derivations on \({End_\mathfrak{A}(\mathfrak{M})}\) is investigated. We give some sufficient conditions on which every derivation on \({End_\mathfrak{A}(\mathfrak{M})}\) is inner. Next, we study approximately innerness of derivations on \({End_\mathfrak{A}(\mathfrak{M})}\) for a σ-unital C*-algebra \({\mathfrak{A}}\) and full Hilbert \({\mathfrak{A}}\)-module \({\mathfrak{M}}\). Finally, we show that every bounded linear mapping on \({End_\mathfrak{A}(\mathfrak{M})}\) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.  相似文献   

8.
The aim of this paper is to study the problem of which solvable Lie groups admit an Einstein left invariant metric. The space \({\mathcal{N}}\) of all nilpotent Lie brackets on \({\mathbb{R}^n}\) parametrizes a set of (n + 1)-dimensional rank-one solvmanifolds \({\{S_{\mu}:\mu\in\mathcal{N}\}}\), containing the set of all those which are Einstein in that dimension. The moment map for the natural GL n -action on \({\mathcal{N}}\), evaluated at \({\mu\in\mathcal{N}}\), encodes geometric information on S μ and suggests the use of strong results from geometric invariant theory. For instance, the functional on \({\mathcal{N}}\) whose critical points are precisely the Einstein S μ ’s, is the square norm of this moment map. We use a GL n -invariant stratification for the space \({\mathcal{N}}\) and show that there is a strong interplay between the strata and the Einstein condition on the solvmanifolds S μ . As an application, we obtain criteria to decide whether a given nilpotent Lie algebra can be the nilradical of a rank-one Einstein solvmanifold or not. We find several examples of \({\mathbb{N}}\)-graded (even 2-step) nilpotent Lie algebras which are not. A classification in the 7-dimensional, 6-step case and an existence result for certain 2-step algebras associated to graphs are also given.  相似文献   

9.
Let \({\mathbb {F}}\) be a field, V a vector space of dimension n over \({\mathbb {F}}\). Then the set of bilinear forms on V forms a vector space of dimension \(n^2\) over \({\mathbb {F}}\). For char \({\mathbb {F}}\ne 2\), if T is an invertible linear map from V onto V then the set of T-invariant bilinear forms, forms a subspace of this space of forms. In this paper, we compute the dimension of T-invariant bilinear forms over \({\mathbb {F}}\). Also we investigate similar type of questions for the infinitesimally T-invariant bilinear forms (T-skew symmetric forms). Moreover, we discuss the existence of nondegenerate invariant (resp. infinitesimally invariant) bilinear forms.  相似文献   

10.
Let k be a field of characteristic zero. Let V be a k-scheme of finite type, i.e., a k-variety, which is integral. We prove that if the associated arc scheme \({\mathcal{L}_{\infty}(V)}\) is reduced, then the \({\mathcal{O}_{V}}\)-Module \({\Omega_{V/k}^{1}}\) is torsion-free. Then if the k-variety V is assumed to be locally a complete intersection (lci), we deduce that the k-variety V is normal. We also obtain the following consequence: for every class \({\mathfrak{C}}\) of integral k-curves which satisfies the Berger conjecture, and for every \({\mathscr{C} \in \mathfrak{C}}\), the k-curve \({\mathscr{C}}\) is smooth if and only if \({\mathcal{L}(\mathscr{C})}\) is reduced.  相似文献   

11.
Let \({\mathcal{L}(X)}\) be the algebra of all bounded operators on a Banach space X. \({\theta:G\rightarrow \mathcal{L}(X)}\) denotes a strongly continuous representation of a topological abelian group G on X. Set \({\sigma^1(\theta(g)):=\{\lambda/|\lambda|,\lambda\in\sigma(\theta(g))\}}\), where σ(θ(g)) is the spectrum of θ(g) and \({\Sigma:=\{g\in G/\enskip\text{there is no} \enskip P\in \mathcal{P}/P\subseteq \sigma^1(\theta(g))\}}\), where \({\mathcal{P}}\) is the set of regular polygons of \({\mathbb{T}}\) (we call polygon in \({\mathbb{T}}\) the image by a rotation of a closed subgroup of \({\mathbb{T}}\), the unit circle of \({\mathbb{C}}\)). We prove here that if G is a locally compact and second countable abelian group, then θ is uniformly continuous if and only if Σ is non-meager.  相似文献   

12.
In this note, we find a monomial basis of the cyclotomic Hecke algebra \({\mathcal{H}_{r,p,n}}\) of G(r,p,n) and show that the Ariki-Koike algebra \({\mathcal{H}_{r,n}}\) is a free module over \({\mathcal{H}_{r,p,n}}\), using the Gröbner-Shirshov basis theory. For each irreducible representation of \({\mathcal{H}_{r,p,n}}\), we give a polynomial basis consisting of linear combinations of the monomials corresponding to cozy tableaux of a given shape.  相似文献   

13.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

14.
We study inverse scattering problems at a fixed energy for radial Schrödinger operators on \({\mathbb{R}^n}\), \({n \geq 2}\). First, we consider the class \({\mathcal{A}}\) of potentials q(r) which can be extended analytically in \({\Re z \geq 0}\) such that \({\mid q(z)\mid \leq C \ (1+ \mid z \mid )^{-\rho}}\), \({\rho > \frac{3}{2}}\). If q and \({\tilde{q}}\) are two such potentials and if the corresponding phase shifts \({\delta_l}\) and \({\tilde{\delta}_l}\) are super-exponentially close, then \({q=\tilde{q}}\). Second, we study the class of potentials q(r) which can be split into q(r) = q 1(r) + q 2(r) such that q 1(r) has compact support and \({q_2 (r) \in \mathcal{A}}\). If q and \({\tilde{q}}\) are two such potentials, we show that for any fixed \({a>0, {\delta_l - \tilde{\delta}_l \ = \ o \left(\frac{1}{l^{n-3}}\ \left({\frac{ae}{2l}}\right)^{2l}\right)}}\) when \({l \rightarrow +\infty}\) if and only if \({q(r)=\tilde{q}(r)}\) for almost all \({r \geq a}\). The proofs are close in spirit with the celebrated Borg–Marchenko uniqueness theorem, and rely heavily on the localization of the Regge poles that could be defined as the resonances in the complexified angular momentum plane. We show that for a non-zero super-exponentially decreasing potential, the number of Regge poles is always infinite and moreover, the Regge poles are not contained in any vertical strip in the right-half plane. For potentials with compact support, we are able to give explicitly their asymptotics. At last, for potentials which can be extended analytically in \({\Re z \geq 0}\) with \({\mid q(z)\mid \leq C (1+ \mid z \mid)^{-\rho}}\), \({\rho >1}\), we show that the Regge poles are confined in a vertical strip in the complex plane.  相似文献   

15.
For an integer N greater than 5 and a triple \({\mathfrak{a}}=[a_{1},a_{2},a_{3}]\) of integers with the properties 0<a i N/2 and a i a j for ij, we consider a modular function \(W_{\mathfrak{a}}(\tau)=\frac{\wp (a_{1}/N;L_{\tau})-\wp (a_{3}/N;L_{\tau})}{\wp (a_{2}/N;L_{\tau})-\wp(a_{3}/N;L_{\tau})}\) for the modular group Γ 1(N), where ?(z;L τ ) is the Weierstrass ?-function relative to the lattice L τ generated by 1 and a complex number τ with positive imaginary part. For a pair of such triples \({\mathfrak{A}}=[{\mathfrak{a}},{\mathfrak{b}}]\) and a pair of non-negative integers F=[m,n], we define a modular function \(T_{{\mathfrak{A}},F}\) for the group Γ 0(N) as the trace of the product \(W_{\mathfrak{a}}^{m}W_{\mathfrak{b}}^{n}\) to the modular function field of Γ 0(N). In this article, we study the integrality of singular values of the functions \(W_{\mathfrak{a}}\) and \(T_{{\mathfrak{A}},F}\) by using their modular equations. We prove that the functions \(T_{{\mathfrak{A}},F}\) for suitably chosen \({\mathfrak{A}}\) and F generate the modular function field of Γ 0(N), and from Shimura reciprocity and Gee–Stevenhagen method we obtain that singular values \(T_{{\mathfrak{A}},F}(\tau)\) for suitably chosen \({\mathfrak{A}}\) and F generate ring class fields. Further, we study the class polynomial of \(T_{{\mathfrak{A}},F}\) for Schertz N-system.  相似文献   

16.
We investigate the Baire category of \({\mathcal{I}}\)-convergent subsequences and rearrangements of a divergent sequence s = (sn) of reals if \({\mathcal{I}}\) is an ideal on \({\mathbb{N}}\) having the Baire property. We also discuss the measure of the set of \({\mathcal{I}}\)-convergent subsequences for some classes of ideals on \({\mathbb{N}}\). Our results generalize theorems due to H. Miller and C. Orhan [16].  相似文献   

17.
We study the class \({\mathcal{M}}\) of functions meromorphic outside a countable closed set of essential singularities. We show that if a function in \({\mathcal{M}}\), with at least one essential singularity, permutes with a non-constant rational map g, then g is a Möbius map that is not conjugate to an irrational rotation. For a given function \({f \in\mathcal{M}}\) which is not a Möbius map, we show that the set of functions in \({\mathcal{M}}\) that permute with f is countably infinite. Finally, we show that there exist transcendental meromorphic functions \({f : \mathbb{C} \to \mathbb{C}}\) such that, among functions meromorphic in the plane, f permutes only with itself and with the identity map.  相似文献   

18.
Let \({\mathcal {C}}\) be a q-ary code of length n and size M, and \({\mathcal {C}}(i) = \{\mathbf{c}(i) \ | \ \mathbf{c}=(\mathbf{c}(1), \mathbf{c}(2), \ldots , \mathbf{c}(n))^{T} \in {\mathcal {C}}\}\) be the set of ith coordinates of \({\mathcal {C}}\). The descendant code of a sub-code \({\mathcal {C}}^{'} \subseteq {\mathcal {C}}\) is defined to be \({\mathcal {C}}^{'}(1) \times {\mathcal {C}}^{'}(2) \times \cdots \times {\mathcal {C}}^{'}(n)\). In this paper, we introduce a multimedia analogue of codes with the identifiable parent property (IPP), called multimedia IPP codes or t-MIPPC(nMq), so that given the descendant code of any sub-code \({\mathcal {C}}^{'}\) of a multimedia t-IPP code \({\mathcal {C}}\), one can always identify, as IPP codes do in the generic digital scenario, at least one codeword in \({\mathcal {C}}^{'}\). We first derive a general upper bound on the size M of a multimedia t-IPP code, and then investigate multimedia 3-IPP codes in more detail. We characterize a multimedia 3-IPP code of length 2 in terms of a bipartite graph and a generalized packing, respectively. By means of these combinatorial characterizations, we further derive a tight upper bound on the size of a multimedia 3-IPP code of length 2, and construct several infinite families of (asymptotically) optimal multimedia 3-IPP codes of length 2.  相似文献   

19.
The Fibonacci cube \({\Gamma_{n}}\) is obtained from the n-cube Q n by removing all the vertices that contain two consecutive 1s. If, in addition, the vertices that start and end with 1 are removed, the Lucas cube \({\Lambda_{n}}\) is obtained. The number of vertex and edge orbits, the sets of the sizes of the orbits, and the number of orbits of each size, are determined for the Fibonacci cubes and the Lucas cubes under the action of the automorphism group. In particular, the set of vertex orbit sizes of \({\Lambda_{n}}\) is \({\{k \geq 1; k |n\} \cup \{k \geq 18; k |2n\}}\), the number of vertex orbits of \({\Lambda_{n}}\) of size k, where k is odd and divides n, is equal to \({\sum_{d | k} \mu (\frac{k}{d})F_{\lfloor{\frac{d}{2}}\rfloor+2}}\), and the number of edge orbits of \({\Lambda_{n}}\) is equal to the number of vertex orbits of \({\Gamma_{n-3}}\). Dihedral transformations of strings and primitive strings are essential tools to prove these results.  相似文献   

20.
We study the algebra \({{\mathrm{{\mathcal {MD}}}}}\) of generating functions for multiple divisor sums and its connections to multiple zeta values. The generating functions for multiple divisor sums are formal power series in q with coefficients in \({\mathbb {Q}}\) arising from the calculation of the Fourier expansion of multiple Eisenstein series. We show that the algebra \({{\mathrm{{\mathcal {MD}}}}}\) is a filtered algebra equipped with a derivation and use this derivation to prove linear relations in \({{\mathrm{{\mathcal {MD}}}}}\). The (quasi-)modular forms for the full modular group \({{\mathrm{SL}}}_2({\mathbb {Z}})\) constitute a subalgebra of \({{\mathrm{{\mathcal {MD}}}}}\), and this also yields linear relations in \({{\mathrm{{\mathcal {MD}}}}}\). Generating functions of multiple divisor sums can be seen as a q-analogue of multiple zeta values. Studying a certain map from this algebra into the real numbers we will derive a new explanation for relations between multiple zeta values, including those of length 2, coming from modular forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号