首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The results of a theoretical investigation of the possibility of using powerful radio-frequency (RF) electromagnetic (EM) radiation combined with solvent injection in high-viscosity oil fields for the purpose of intensifying oil recovery are given. A mathematical model of the three-stage stimulation of a high-viscosity oil pool is proposed. The model takes into account the cross-flow heat and mass transfer effects initiated by the movement of a multicomponent system through a porous medium under the action of an EM field. A comparative analysis of the results of calculations of the proposed combined method and its components (EM treatment of the reservoir bottomhole zone without solvent injection and “cold” displacement of oil by a solvent) is carried out.  相似文献   

4.
5.
A gas jet injected into a channel is simulated numerically. The dependence of the mixing efficiency on the injection orifice aspect ratio, jet screening, and the ratio of the injected and channel gas densities is established. The mixing efficiency is estimated in terms of the mean concentration across the jet.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–74, May–June, 1996.  相似文献   

6.
基于离散单元法构建了考虑碎石形状的柔性边界不排水双轴压缩模型,研究了11组不同含石量土石混合料在不排水条件下的宏细观力学特性。研究发现,(1)土石混合料强度随含石量增加先增后减,含石量超过约60%时形成碎石骨架,强度快速增长;含石量约80%时强度和内摩擦角最大;含石量增加,混合料黏聚力逐渐减小。(2)不排水受载下,土石混合料孔隙水压力先正后负、先增后减。含石量较小时,含石量增加,混合料孔隙水压力变化较小,混合料在碎石骨架形成初期孔隙水压力增加;碎石骨架完全形成后最大孔隙水压力减小。(3)含石量小于约30%时,混合料应变局部化呈规则剪切带,随后含石量增加破坏规则剪切带,当含石量约为80%时,混合料再次形成规则剪切带。含石量增加,配位数逐渐减小,颗粒间接触力在含石量小于60%时随含石量增加缓慢增长,超过70%时则快速增长。  相似文献   

7.
The results of experimental study on detonation interaction with the regions of low reactivity, generated by the injection of an inert gas into reactive mixture, are reported. A square cross-section 60×60 mm, 3.6 m long detonation channel was used. The experiments were done for stoichiometric H2−O2 mixture at 0.3 bar and 0.5 bar initial pressure and room temperature. The inert gas (Ar, He, N2 or CO2) was injected from 0.523 dm3 container into the main channel 1 s before ignition. The size of the inert zone was controlled by inert initial pressure. The behavior of detonation was studied using direct streak photography and pressure transducers. The study has shown that at low pressure of Ar, N2 and CO2 injection only a slight decrease of detonation velocity occurs. At higher injection pressures complete damping of detonation and flame extinguishment occur, followed by flame reigniton and DDT outside the inert zone. For low He injection pressures an increase in detonation velocity was recorded. For higher injection pressures, detonation damping occurred, followed by DDT process. The results have shown that CO2 has the strongest effect on damping 2H2+O2 detonation, with N2 and Ar in the next places, and He very far behind. The effectiveness of inert gas in detonation damping was found proportional to its molecular weight and reciprocal to its specific heat ratio. The numerical simulations of detonation propagation through inert gas zone were also performed using the one- dimensional Detonation Lagrangean code with simple energy release model. The results of simulations are in good qualitative agreement with experimental tendencies. In particular, the model has shown that the re-initiation of detonation is enhanced by smooth concentration gradients at inert/reactive interface. An abridged version of this paper was presented at the 15th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Boulder, Colorado, from July 30 to August 4, 1995  相似文献   

8.
This paper considers the problem of water displacement by gas in an infinite aquifer which has nonuniform permeability.  相似文献   

9.
A complete 3-D crystal plasticity finite element method (CPFEM) that considered both crystallographic slip and deformation twinning was applied to simulate the spatial distribution of the relative amount of slip and twin activities in a polycrystalline AZ31 Mg alloy during in-plane compression. A microstructure mapping technique that considered the grain size distribution and microtexture measured by electron backscatter diffraction (EBSD) technique was used to create a statistically representative 3-D microstructure for the initial configuration. Using a 3-D Monte Carlo method, a 3-D digital microstructure that matched the experimentally measured grain size distribution was constructed. Crystallographic orientations obtained from the EBSD data were assigned on the 3-D digital microstructure to match the experimentally measured misorientation distribution. CPFEM captured the heterogeneity of the stress concentration as well as the slip and twin activities of a polycrystalline AZ31 Mg alloy during in-plane compression.  相似文献   

10.
The problem of detonation initiation in a supersonic flow of a stoichiometric propane-air mixture occupying partially or completely the cross-section of a plane channel is considered. The initiation in the flow is produced by a step or a wall completely cutting off the flow. The study is conducted within the framework of one-stage combustion kinetics. A numerical method based on the Godunov scheme is employed. The critical conditions for detonation formation are determined in terms of the oncoming flow velocity. A previously unknown mechanism of detonation propagation is found; it is related with the presence of the combustible mixture in the wall layer under an inert gas layer. It is due to the formation of a complicated wave structure of the flow characterized by the penetration of a shock wave formed in the inert gas layer into a combustible mixture layer ahead of the detonation wave with the result that the latter layer is heated and ignited. The process as a whole is periodic in nature, as distinct from the conventional cellular detonation in a homogeneous fluid. Many problems arise in connection with the use of detonation in engines and other power plants. The most important among them are detonation excitation and stabilization in combustion chambers. The detonation initiation within a layer under conditions of unbounded space and a fluid at rest was experimentally investigated in [1]. In the case of a combustion chamber bounded in the transverse direction, some new effects accompanying the detonation might be expected.  相似文献   

11.
A 3-D free surface flow in open channels based on the Reynolds equations with thek-ε turbulence closure model is presented in this paper. Insted of the “rigid lid” approximation, the solution of the free surface equation is implemented in the velocity—pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.  相似文献   

12.
为了研究惰性气体(氮气及二氧化碳)对合成气爆炸特性的影响,利用20L球形爆炸仪器,开展不同体积分数氮气与二氧化碳作用下不同当量比合成气的爆炸实验,从爆炸峰值压力、爆炸压力到达峰值时间、爆炸指数方面分析惰性气体对合成气爆炸特性的影响。研究结果表明:惰性气体体积分数的增加会降低合成气的爆炸压力和爆炸指数,推迟爆炸压力到达峰值的时间;在相同体积分数下,CO2比N2能更有效地降低合成气的爆炸峰值压力和爆炸指数,减小爆炸反应的剧烈程度,CO2在抑制合成气爆炸方面比N2的效果明显。  相似文献   

13.
In order to study the diffusion, migration, and distribution of pollutants among overlying water-body and porous seabed under wave conditions, a dynamic coupling numerical model is proposed. In this model, the coupling between wave field of overlying water-body and seepage of porous bed, the capture and release of pollutants in porous media, and the transport process between the two different regions are taken into account. We use the unified equations for pressure correction and pollutant concentration to solve the numerical model, which avoids repeated iteration on the interface boundary. The model is verified by several case studies. Afterwards, the processes involving release of pollutant from porous seabed and transportation to overlying water-body under different wave conditions are investigated. The results show that the water depth, wave height,and wave period have great influences on the release, capture, and transport processes for phosphorus pollutant.  相似文献   

14.
A numerical simulation based on discrete element method (DEM) was conducted on the excavation and pushing processes of soil by a bulldozer blade. Soil contains water and the resistance acting on the bulldozer blade is largely influenced by the cohesive force due to liquid bridges formed among soil particles. In the present study, a cohesive bond force model proposed by Utili and Nova [5] was introduced in which the microscopic behavior of cohesive force was modeled analogously with macroscopic shear failure characteristics. The dependency on the magnitude of microscopic cohesive force was verified. The behavior of particles changed greatly by taking into account the cohesive bond force. The characteristic behavior of excavated soil aggregates, such as rolling motion and intermittent collapsing, were observed in front of the blade surface.  相似文献   

15.
We present an efficient and easily implementable finite volume method simulating radionuclide transport through highly heterogeneous grounds in three space dimensions. The numerical concentration of the transported chemicals are proved to remain nonnegative and stable. Then, we run a realistic test case in which some radioactive iodine I129 particles are released from a leak in an underground nuclear waste disposal site. The question of whether the radionuclide invades the underground and reach the ground surface is investigated. Because of the 3D nature of the problem, a particular emphasis is made on the control of CPU time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
By using the lattice model combined with finite element methods and statistical techniques, a numerical approach is developed to establish mechanical models of three-dimensional heterogeneous brittle materials. A special numerical code is introduced, in which a lattice model and statistical approaches are used to simulate the initial heterogeneity of material properties. The size of displacement-load step is adaptively determined so that only few elements would fail in each load step. When the tensile principal strain in an element exceeds the ultimate strain of this element, the element is considered broken and its Young's modulus is set to be very low. Some important behaviors of heterogeneous brittle materials are indicated using this code. Load-displacement curves and figures of three-dimensional fracture patterns are also numerically obtained, which are similar to those observed in laboratory tests.  相似文献   

17.
18.
The flow of a saturated gas through a porous medium, partially occupied by a liquid phase, causes evaporation due to gas expansion. This process, referred to as flow-through drying, is important in a wide variety of natural and industrial applications, such as natural gas production, convective drying of paper, catalysts, fuel cells and membranes. X-ray imaging experiments were performed to study the flow-through drying of water-saturated porous media during gas injection. The results show that the liquid saturation profile and the rate of drying are dependent on the viscous pressure drop, the state of saturation of the gas and the capillary characteristics of the porous medium. During the injection of a completely saturated gas, drying occurs only due to gas expansion. Capillary-driven flow from regions of high saturation to regions of low saturation lead to more uniform saturation profiles. During the injection of a dry gas, a drying front develops at the inlet and propagates through the porous medium. The experimental results are compared with numerical results from a continuum model. A good agreement is found for the case of sandstone. The comparison is less satisfactory for the experiments with limestone.  相似文献   

19.
20.
The dynamics of thermal ripples at the interface of a volatile pure liquid (C2H5OH) is studied experimentally and numerically. Liquid evaporates under a flow of inert gas (N2) circulating along the interface. The evaporation rate is varied by regulating both the gas flow rate and the gas pressure. Experiments in microgravity environment allowed to identify a transition to “interfacial turbulence,” along which some particular events such as nearly periodic and possible intermittent behaviors. Direct numerical simulations have been performed, and compare qualitatively well with experimental results, offering new insights into the physical mechanisms involved. Small-scale ripples appear to arise from a secondary instability of large-scale convection cells and their motion seems to follow the corresponding large-scale surface flow. The relative role of surface tension and buoyancy in triggering these flows is assessed by comparing experiments and simulations in both microgravity and ground conditions. Qualitative features compare satisfactorily well such as typical speed and orientation of the thermal ripples, as well as spiral flow in the bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号