首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas permeation tests using nitrogen, oxygen, hydrogen, helium and carbon dioxide were performed to assess how membrane modification procedures affect the separating layer morphology of thin-film composite reverse osmosis membranes. Gas selectivity data provided evidence for the presence of nanoscale separating layer defects in dry samples of six commercial membrane types. These defects were eliminated when the membrane surface was coated with a polyether–polyamide block copolymer (PEBAX 1657), as indicated by a 25-fold decrease in gas permeance and at least a 2-fold increase in most selectivity values. Treatment with n-butanol followed by drying reduced water flux and gas flux by 30% and 75%, respectively, suggesting that using n-butanol as a solvent for applying coatings negatively affects membrane performance. The results of this study demonstrate that gas permeation measurements can be used to detect morphological features that impact gas and water membrane flux.  相似文献   

2.
Experimental and theoretical results of studying gas permeation through porous membranes are presented. In order to mimic an asymmetric membrane two porous ceramic disks with different pore radii were arranged in series. Besides the possibility to perform conventional permeation measurements, the applied experimental setup permits the determination of the pressure at the interface between the two discs. To predict the performance of the asymmetric structure, in preliminary experiments structure parameters were determined for both membranes separately. For the same total pressure difference across the two-disk arrangement, different interlayer pressures and fluxes were predicted and detected experimentally depending on the flow direction.  相似文献   

3.
The permeation rates of He, H2, CO2, N2 and O2, are reported for a series of miscible polysulfone-polyimide (PSF-PI) blend membranes synthesized in our laboratory. For gases which do not interact with the polymer matrix (such as He, H2, N2 and O2), gas permeabilities in the miscible blends vary monotonically between those of the pure polymers and can be described by simple mixture equations. In the case of CO2, which interacts with PI, blend permeabilities decrease somewhat, compared to pure PSF and PI. This, however, is accompanied by a two-fold improvement in the critical pressures of plasticization vs. polyimide. Permselectivities of CO2/N2 and H2/CO2 in the blends deviate from mixing theory predictions, in contrast to selectivities of gas pairs which do not interact with PI. Differential scanning calorimetry measurements of pure and PSF/PI blend membranes show one unique glass transition temperature, supporting the miscible character of the PSF/PI mixture. Optical micrographs of the blend membranes clearly indicate perfect homogenization and no phase separation. Frequency shifts and absorption intensity changes in the FTIR spectra of the blends, as compared with those of the pure polymers, indicate mixing at the molecular level. This compatibility in mixing PSF and PI, results essentially in a new blend polymer material, suitable for the preparation of gas separation membranes. Such membranes combine satisfactory gas permeation properties, reduced cost, advanced resistance to harsh chemical and temperature environments, and improved tolerance to plasticizing gases.  相似文献   

4.
Asymmetric carbon hollow fiber membranes were prepared by pyrolysis of an asymmetric polyimide hollow fiber membrane, and their mechanical and permeation properties were investigated. The carbon membrane had higher elastic modulus and lower breaking elongation than the polyimide membrane. Permeation experiments were performed for single gases such as H2, CO2, and CH4, and for mixed gases such as H2/CH4 at high feed pressure ranging from 1 to 5 MPa with or without toluene vapor. The permeation properties of the carbon membranes and the polyimide membrane were compared. There was little change in the properties of the carbon membranes with a passage of time. The properties were hardly affected by the feed pressure, whether the feed was accompanied with the toluene vapor or not, because the carbon membranes were not affected by compaction and plasticization.  相似文献   

5.
Polycrystalline randomly oriented defect free zeolite layers on porous α-Al2O3 supports are prepared with a thickness of less than 5 μm by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite poze, the flux of the weakly adsorbing molecule is suppressed by the sorption and the mobility of the strongly adsorbing molecule resulting in pore-blocking effects. The separation of these mixtures is mainly based on the sorption and completely different from the permselectivity. At low loadings of the strongly adsorbing molecules the separation is based on the sorption and the diffusion and is the same as the permselectivity. Separation factors for the isomers of butane (n-butane/isobutane) and hexane (hexane/2,2-dimethylbutane) are respectively high (10) and very high (> 2000) at 200°C. These high separation factors are a strong evidence that the membrane shows selectivity by size-exclusion and that transport in pores larger than the zeolite MFI pores (possible defects, etc) can be neglected.  相似文献   

6.
The effect of silica nanoparticles on the gas separation properties of ethylene vinyl acetate (EVA) copolymer containing 28% vinyl acetate has been investigated. The EVA and hybrid EVA–silica membranes were prepared via thermal phase inversion method. Silica nanoparticles prepared by hydrolysis of tetraethylorthosilicate (TEOS), through the sol–gel mechanism. The prepared membranes were characterized using FT-IR, SEM, DSC and XRD methods. FT-IR and SEM results indicated the nanoscale dispersion of silica particles in polymer matrix. As confirmed by XRD and DSC analyses, increasing the silica content enhances the amorphous regions significantly. Gas permeation of EVA–silica nanocomposite membranes with silica contents of 5, 6 and 10 wt.% was studied for N2, O2, CO2 and CH4 single gases at pressures of 4, 6 and 8 bar. The obtained results suggest a significant increase in permeability of all gases and an increase in CO2/N2 and CO2/CH4 gases selectivities upon increasing the silica content. The possible reasons for such behavior were stated and discussed. The pressure dependence of the gas permeabilities of the membranes was also investigated.  相似文献   

7.
Gas permeation properties of poly(lactic acid)   总被引:2,自引:0,他引:2  
The need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen, oxygen, carbon dioxide, and methane in amorphous films of PLA cast from solution. The properties of PLA are compared to other commodity plastics and it is shown that PLA permeation closely resembles that of polystyrene. At 30°C, N2 permeation in PLA is 1.3 (10−10 cm3 (STP) cm/cm2 s cmHg) and the activation energy is 11.2 kJ/mol. For oxygen the corresponding values are 3.3 (10−10 cm3(STP) cm/cm2 s cm Hg) and 11.1 kJ/mol. The values for carbon dioxide permeation are 1.2 (10−10 cm3 (STP) cm/cm2 s cmHg) and 6.1 kJ/mol. For methane values of 1.0 (10−10 cm3 (STP) cm/cm2 s cmHg) and an activation energy of 13.0 kJ/mol are found. Studies with pure gases show that polymer chain branching and small changes in l:d stereochemical content have no effect on permeation properties. Crystallinity is found to dominate permeation properties in a biaxially oriented film. The separation factor for a CO2/CH4 mixed gas system is measured between 0 and 50°C and does not deviate significantly from the calculated ideal separation factor; at 0°C the separation factor is 16, a value that suggests continued studies of PLA as a separation medium are warranted.  相似文献   

8.
A 141100-atom model of a glassy ODPA–ODA polyimide free-standing membrane, corresponding to a thickness of two average radii of gyration for the 40-mers chains, has been studied using molecular dynamics (MD) simulations. Due to the large-scale of the fully atomistic model, a parallelized particle-mesh technique using an iterative solution of the Poisson equation had to be implemented for the efficient evaluation of the electrostatic interactions. With flattened-chain configurations, the density was found to adjust itself naturally in the middle of the membrane to 95% of the ODPA–ODA experimental value. At the free-standing surfaces, the density profile became sigmoïdal, indicating surface roughness. For comparison, two isotropic bulk models, one at the “normal” density as obtained for ODPA–ODA under ambient conditions and the other one at 95% of the normal-density, were built. Small gas probes were inserted into all three models in order to investigate whether the interfacial structure of the glassy free-standing membrane can influence penetrant transport. Gas diffusion in the low-density part of the interface was found to be very fast. The limiting value for the gas diffusion coefficient Dmembrane is only attained when the probes enter more dense regions in the membrane. Indeed, Dmembrane compares well with Dbulk obtained for the 95%-density bulk system, i.e. about twice that in the normal-density bulk. Solubility is larger in the membrane than in both bulk models, thus suggesting an effect of chain flattening in addition to the density. Adsorption is particularly high at the free-standing interfaces.  相似文献   

9.
This work deals with water-swollen hydrogel membranes for potential CO2 separation applications, with an emphasis on elucidating the role of water in the membrane for gas permeation. A series of hydrogel membranes with a wide range of water contents (0.9–10 g water/g polymer) were prepared from poly(vinyl alcohol), chitosan, carboxyl methyl cellulose, alginic acid and poly(vinylamine), and the permeation of CO2, H2, He and N2 through the membranes at different pressures (200–800 kPa) was studied. The gas permeabilities through the dry dense membranes were measured as well to evaluate the resistance of the polymer matrix in the hydrogel membranes. It was shown that the gas permeability in water-swollen membrane is lower than the gas permeability in water, and the selectivity of the water-swollen membranes to a pair of gases is close to the ratios of their permeabilities in water. The permeability of the water-swollen membranes increases with an increase in the swelling degree of the membrane, and the membrane permeability tends to level off when the water content is sufficiently high. A resistance model was proposed to describe gas permeation through the hydrogel membranes, where the immobilized water retained in the polymer matrix was considered to form transport passageways for gas permeation through the membrane. It was shown that the permeability of hydrogel membranes was primarily determined by the water content in the membrane. The model predictions were consistent with the experimental data for various hydrogel membranes with a wide range of water contents (0.4–10 g water/g polymer).  相似文献   

10.
Permeabilities of N2, Ar, O2, CO2, and H2 gases in PEMA (Polyethylmethacrylate) membranes have been measured above and below glass transition in the temperature range of 25–70 °C. The permeabilities of the gases were observed increasing with temperature. Arrhenius plot of permeability versus temperature data showed that there is a slope discontinuity at near to Tg of PEMA. In addition, the effects of membrane preparation parameters by solvent casting method (percentage of polymer in solvent, annealing temperature, annealing time, evaporation temperature, and evaporation time) have been investigated by using homogenous dense membranes of PEMA. It is observed that membrane preparation parameters strongly affect the membrane performance and the reproducibility of the permeability measurements. On the other hand, the effect of polymer structure on membrane performance has been investigated. Comparison of the permeabilities of N2, Ar, O2, CO2, and H2 gases in PEMA and PMMA membranes shows that PMMA membranes have smaller permeabilities and higher selectivities than PEMA membranes because of their higher glass transition temperature, Tg. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3025–3033, 2007  相似文献   

11.
Poly(methyl methacrylate) membranes of different fractional free volume (FFV) were prepared by dry casting from different solvents. Free volume data were determined by means of Bondi method and positron annihilation lifetime spectroscopy (PALS). It was found that both the boiling point and the solubility parameter of casting solvent affect the membrane’s free volume. It was believed that the difference in free volume was arisen from the difference in polymer packing.The gas permeability is higher when membranes are cast from higher molecular weight PMMA. But the plasticizing effect of CO2 is less serious compared with the low molecular weight one. The high molecular weight PMMA membrane also has an extremely high O2/N2 selectivity, indicating its high structure uniformity. These results indicate that membranes made from polymer of higher molecular weight have the advantages of high permeability, gas selectivity and are less sensitive to CO2 plasticization. The intrinsic gas transport properties such as the permeability, solubility and diffusivity of O2, N2, and CO2 are measured or calculated. The effects of fractional free volume on membrane gas separation properties were investigated. It was found that the fractional free volume had no definite effects on gas solubility, but the gas permeability and diffusivity increased accordingly to the measured free volume.  相似文献   

12.
Aromatic polyamide particles were prepared by reacting p-phthalyl chloride and 4,4′-diaminodiphenyl ether in an acetone solution with a high water content, using a precipitation polymerization method with ultrasonic irradiation. The average particle diameter was ca. 712 nm, and the particles were porous and spherical with a narrow size distribution. They showed a high degree of crystallinity and excellent thermal stability. The morphology and the thermal decomposition temperature of the submicron particles were found to depend strongly on the volume of water added to the reaction system. In this polymerization method, the addition of water was essential for the formation of spherical particles. The simultaneous mixing process resulted in the formation of particles with a narrow size distribution, and the use of ultrasonic irradiation was effective in reducing particle size.  相似文献   

13.
We describe the differential permeation method for the study of the diffusion of solvents from a liquid (or liquid mixture) through flat or tubular membranes. This method consists of measuring the transient permeation rates through the membrane when one of its faces is suddenly put into contact with the liquid medium. The change in the transient rate with time is analyzed by numerical best fitting methods to determine the Fickian diffusion coefficient. A simplified equation is proposed for the fitting of the response of a tubular membrane. Deviations from the Fickian transport mechanism with concentration-independent diffusion coefficient can be evidenced and eventually analyzed by using other mechanistic models.  相似文献   

14.
Diarylacetylene monomers containing substituted biphenyl ( 1a – f ) and anthryl ( 1g ) groups were synthesized and then polymerized with TaCl5n‐Bu4Sn catalyst to produce the corresponding poly(diarylacetylene)s ( 2a – g ). Polymers 2a – f were soluble in common organic solvents such as cyclohexane, toluene, and chloroform. According to thermogravimetric analysis, the onset temperatures of weight loss of the polymers were over 400 °C in air, indicating considerably high thermal stability. Free‐standing membranes 2a and 2c – e were prepared by the solution casting method. Desilylation of Si‐containing membrane 2c was carried out with trifluoroacetic acid to afford 3c . All the polymer membranes, especially those having twisted biphenyl groups, exhibited high gas permeability; for example, their oxygen permeability (PO 2) values ranged from 130 to 1400 barrers. Membrane 2d having two chlorine atoms in the biphenyl group showed the highest gas permeability (PO 2 = 1400 barrers) among the present polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 861–868, 2010  相似文献   

15.
Dense membranes of Hyflon AD 60X were prepared by the solvent evaporation method and by melt pressing. The diffusion coefficient, solubility and permeability of the membranes were measured for six permanent gases using time lag and steady state permeation measurements. The thermal properties were determined by Differential Scanning Calorimetry (DSC) and the solvent content was measured gravimetrically and was estimated by the Fox equation. It was found that unusually strong solvent retention in the solution-cast membrane leads to considerable plasticization of the polymer, to possible foam formation upon drying and, most important, to significant changes in the permeation properties. The residual solvent increases the diffusion coefficient and permeability of the larger gas species up to almost one order of magnitude, and it reduces the permselectivity. For most gas species the solubility is about two times higher in the solvent-free melt-pressed film than in the solution-cast film. The relation between the residual solvent and the membrane properties is discussed.  相似文献   

16.
Pervaporation was used for removal of butan-1-ol from its 5 wt.% of aqueous solution, at which the concentration of Clostridium acetobutylicum starts to decrease. The polydimethylsiloxane (PDMS) membrane containing 0, 10, 20 or 30 wt.% of benzyl-3-butylimidazolium tetrafluoroborate ([BBIM][BF4]) ionic liquid was used. Differential scanning calorimetry measurements showed that PDMS-[BBIM][BF4] membranes (though optically homogeneous) contained PDMS and [BBIM][BF4] phases. Pervaporation selectivity increased and total flux through membranes raised moderately with an increased content of [BBIM][BF4] in PDMS-[BBIM][BF4] membranes. Hence, immobilization of a proper ionic liquid in a membrane results in the creation of pervaporation membranes, effective in the removal of alcohol from fermentation broths.  相似文献   

17.
Influence of the structure of styrene and polystyrene modified PE membranes on their permeation properties is presented. It is demonstrated that the temperature of styrene treatment (N membranes) and the presence of polystyrene (P membranes) results in high differentiation of the permeation properties. SALS studies have shown the structural reorganization depending on modification extent and diffusion of the penetrant. It is also shown that the morphology of the dried films remains unchanged. This work proves that the appropriate modification of PE films results in membranes with controlled permeation behavior.  相似文献   

18.
Cellulose acetate (CA) membranes blended with Polyethylene glycol (PEG) in acetone–water solvent system were synthesized by using solution-casting method that resulted in the formation of flexible, white membranes. Different molecular weight (MW) grades of PEG (including MW 1000, 10,000 and 20,000?g/mol) were used. Cast membranes were tested for tensile strength and permeability at different loading of PEG MW 10,000 and 20,000?g/mol. Excellent flexible membranes were produced in acetone–water solvent system in the presence of PEG, which were otherwise brittle. Surface structure and morphology were analysed using scanning electron microscopy. The presence of different functional groups was confirmed using Fourier transform infra-red spectroscopy and the mechanical characteristics were studied by tensile testing. The introduction of PEG caused an increase in permeability of the membranes. The increase in permeability is due to the opening up of pores as the membrane becomes more flexible, when the plasticizer is added. The permeability continues to increase with the addition of PEG. Moreover, the resulting membranes are not only more flexible, but also have largely improved tensile strength as compared to the CA membranes without PEG. This improved tensile strength can also be attributed to the improved flexibility of the membrane. A trade-off is reached between tensile strength and permeability as increasing amount of PEG improves tensile strength but the resulting membrane becomes too permeable to be used for gas separation. Moreover, using PEG of higher MW resulted in porous membranes, even at low amounts of PEG. Therefore, we concluded that CA membrane with less amount of low-MW PEG (i.e. 5% PEG of MW 1000?g/mol) must be used to optimize both permeability and tensile strength of the membrane.  相似文献   

19.
Dialkyl imidazolium salt with better thermal stability than the commonly used dimethyldioctadecyl ammonium salt was synthesized and ion exchanged on the montmorillonite surface. Polypropylene nanocomposites with different volume fractions of the obtained organo-montmorillonite (OMMT) were prepared and the effect of the modified clay on the gas barrier and mechanical properties was studied. Wide angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM) were used to investigate the microstructure obtained. Thermal behavior of the composites analyzed by thermogravimetric analysis was observed to enhance significantly with the filler volume fraction. The gas permeation through the nanocomposite films markedly decreased with augmenting the filler volume fraction. The decrease in the gas permeation was even more significant than through the composites with ammonium treated montmorillonite. Better thermal behavior of the organic modification owing to the delayed onset of degradation hindered the interface degradation along with detrimental side reactions with polymer itself. Transmission electron microscopic studies indicated the presence of mixed morphology i.e., single layers and the tactoids of varying thicknesses in the composites. The crystallization behavior of polypropylene remained unaffected with OMMT addition. A linear increase in the tensile modulus was observed with filler volume fraction owing to partial exfoliation of the clay.  相似文献   

20.
A detailed study of gas permeation, thermodynamic properties and free volume was performed for a novel polymer of intrinsic microporosity (PIM-1). Gas permeability was measured using both gas chromatographic and barometric methods. Sorption of vapors was studied by means of inverse gas chromatography (IGC). In addition, positron annihilation lifetime spectroscopy (PALS) was employed for investigation of free volume in this polymer. An unusual property of PIM-1 is a very strong sensitivity of gas permeability and free volume to the film casting protocol. Contact with water in the process of film preparation resulted in relatively low gas permeability (P(O2) = 120 Barrer), while soaking with methanol led to a strong increase in gas permeability (P(O2) = 1600 Barrer) with virtually no evidence of fast aging (decrease in permeability) that is typical for highly permeable polymers. For various gas pairs (O2/N2, CO2/CH4, CO2/N2) the data points on the Robeson diagrams are located above the upper bound lines. Hence, a very attractive combination of permeability and selectivity is observed. IGC indicated that this polymer is distinguished by the largest solubility coefficients among all the polymers so far studied. Free volume of PIM-1 includes relatively large microcavities (R = 5 Å), and the results of the PALS and IGC methods are in reasonable agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号