首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Aromatic polyamides and polyimides with improved gas permselectivity, can be designed and prepared by systematically changing structural elements that affect these properties. Indeed, a conscientious choosing of the chemical changes may still provide a promising approach to get better and better polymers for selective filtration of gases. The results of this work, in which novel monomers have been used, have confirmed that gas permeability through aromatic polyamides and polyimides much higher than that of conventional polyamides and polyimides can be achieved. It has been done by introducing bulky side groups, using non-planar monomers, and combining these elements on both monomers: diamines and dianhydrides or diamines and diacids. A theoretical study has also been made to explain the behaviour of some individual polymers, comparing experimental and calculated values of density and free volume.  相似文献   

2.
Aromatic polyamides based on poly(m‐xylylene adipamide) (MXD‐based polyamides) and poly(hexamethylene isophthalamide) (HMD‐based polyamides) were examined. Insight into the excellent gas‐barrier properties was obtained by the characterization of the effect of water sorption on the thermal transitions, density, refractive index, free‐volume hole size, and oxygen‐transport properties. Reversing the carbonyl position with respect to the amide nitrogen substantially lowered the oxygen permeability of MXD‐based polyamides in comparison with that of HMD‐based polyamides by facilitating hydrogen‐bond formation. The resulting restriction of conformational changes and segmental motions reduced diffusivity. The primary effect of water sorption was a decrease in the glass‐transition temperature (Tg) attributed to plasticization by bound water. No evidence was found to support the idea that sorbed water filled holes of free volume. When the polymer was in the glassy state, the drop in Tg accounted for hydration‐dependent changes in the density, refractive index, and free‐volume hole size. The correlation of the oxygen solubility with Tg and density confirmed the concept of oxygen sorption as filling holes of excess free volume. In some cases, water sorption produced a glass‐to‐rubber transition. The onset of rubbery behavior was associated with a minimum in the oxygen permeability. The glass‐to‐rubber transition also facilitated the crystallization of MXD‐based polymers, which complicated the interpretation of oxygen‐transport behavior at higher relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1365–1381, 2005  相似文献   

3.
The effects of film thickness, physical aging, and methanol conditioning on the solubility and transport properties of glassy poly[1‐phenyl‐2‐[p‐(triisopropylsilyl) phenyl]acetylene] are reported at 35 °C. In general, the gas permeability coefficients are very high, and this polymer is more permeable to larger hydrocarbons (e.g., C3H8 and C4H10) than to light gases such as H2. The gas permeability and solubility coefficients are higher in as‐cast, unaged films than in as‐cast films aged at ambient conditions and increase to a maximum in both unaged and aged as‐cast films after methanol conditioning. For example, the oxygen permeability of a 20‐μm‐thick as‐cast film is initially 100 barrer and decreases to 40 barrer after aging for 1 week at ambient conditions. After methanol treatment, the oxygen permeabilities of unaged and aged films increase to 430 and 460 barrer, respectively. Thicker as‐cast films have higher gas permeabilities than thinner as‐cast films. Propane and n‐butane sorption isotherms suggest significant changes in the nonequilibrium excess free volume in these glassy polymer films due to processing history. For example, the nonequilibrium excess free volume estimated from the sorption data is similar for as‐cast, unaged samples and methanol‐conditioned samples; it is 100% higher in methanol‐conditioned films than in aged, as‐cast films. The sensitivity of permeability to processing history may be due in large measure to the influence of processing history on nonequilibrium excess free volume and free volume distribution. The propane and n‐butane diffusion coefficients are also sensitive to film processing history, presumably because of the dependence of diffusivity on free volume and free volume distribution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1474–1484, 2000  相似文献   

4.
The solubility, diffusivity, and permselectivity of propylene and propane in 40 different polyimides synthesized from 2,2‐bis(3,4‐decarboxyphenyl)hexafluoropropane dianhydride (6FDA) were determined at 298 K. The influence of the chemical structures on the physical and gas permeation properties of the 6FDA‐based polyimides was studied. The solubility of propylene in an unrelaxed volume of a polymer matrix mainly contributes to the total solubility of propylene for various 6FDA‐based polyimides. The diffusivity, the permeability of propylene, and the permselectivity in the propylene/propane mixed‐gas system depend on the solubility of propylene. This is thought to be associated with the penetrant‐induced plasticization effect. 6FDA‐based polyimides, which have a high glass‐transition temperature and a large fractional free volume, exhibit a high permeability with a relatively low permselectivity. Changing the number of  CH3 substituents in the phenylene linkage and changing the connectivity in the main chain are good ways of controlling the solubility of propylene and the corresponding permselectivity in the propylene/propane mixed‐gas system. Some 6FDA‐based polyimides restrict the solubility of propylene through the introduction of a  CONH linkage between the phenylene linkage; the  Cl substituent in the phenylene linkage at the diamine moiety exhibits a high separation performance in the mixed‐gas system. The polyimides are potentially useful membrane materials for the separation of propylene and propane in the petrochemical industry. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2525–2536, 2000  相似文献   

5.
A series of polyisophthalamides containing pendent oxybenzoyl groups were prepared from 5-oxybenzoyl-isophthaloyl chloride and aromatic diamines. The analogous unsubstituted polyisophthalamides were also prepared in order to compare the two series and to determine the effect of oxybenzoyl pendent groups on the properties of aromatic polyamides. The modified polymers exhibited better solubility than, and approximately the same glass transition temperatures (in the range 260–290°C) as, the parent unsubstituted polymers. The mechanical strength of polymer films was affected only to a small extent by the presence of side groups, but the thermal resistance was negatively affected, with the result that polyisophthalamides with oxybenzoyl pendent groups began to decompose at about 360°C (TGA), 60–100°C lower than the unsubstituted polyisophthalamides. By means of an appropriate thermal treatment, crosslinking of the modified polymers was achieved and their thermal resistance significantly enhanced.  相似文献   

6.
Novel aromatic polyamides have been prepared by a combination of diacids containing preformed benzimidazole rings and aromatic diamines. By the phosphorylation method of polycondensation, polymers of high molecular weight (inherent viscosities between 0.81 and 2.13 dL/g) were obtained, which showed good solubility in polar aprotic solvents. The combination of aromatic amide linkages and benzimidazole rings along the polymer chain endowed the polymers with high thermal resistance and excellent mechanical properties. Glass transition temperatures fell in the range of 290–330 °C as measured by differential scanning calorimetry, and initial decomposition temperatures under nitrogen were over 480 °C as measured by thermogravimetric analysis. Some polymer films showed outstanding tensile strength (over 150 MPa) and moduli (up to 5 GPa). The presence of benzimidazole rings in the current polyamides greatly enhanced their hydrophilicity in comparison with classical wholly aromatic polyamides; thus, although aromatic polyamide films normally show water sorption values of only 4–8%, some of the current poly(benzimidazole amide)s show water sorption up to 19% in a 65% relative humidity atmosphere. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7566–7577, 2008  相似文献   

7.
Aromatic polyamides based on a novel bis(ether‐carboxylic acid) were synthesized by the direct phosphorylation condensation method. 1,4‐Bis(4‐carboxyphenoxy)‐2,5‐di‐tert‐butylbenzene was combined with various diamines containing flexible linkages and side substituents to render a set of eight novel aromatic polyamides. The polymers were produced with high yields and moderate to high inherent viscosities (0.49–1.32 dL/g) that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 31,000–80,000 and 19,000–50,000, respectively. Except for a single example, the polyamides were essentially amorphous and soluble in a variety of common solvents such as cyclohexanone, dioxane, and tetrahydrofuran. They showed glass‐transition temperatures of 250–295 °C (by differential scanning calorimetry) and 10% weight loss temperatures above 460 °C, as revealed by thermogravimetric analysis in nitrogen. Polymer films, obtained by casting from N,N‐dimethylacetamide solutions, exhibited good mechanical properties, with tensile strengths of 83–111 MPa and tensile moduli of 2.0–2.2 GPa. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 475–485, 2001  相似文献   

8.
Two novel isophthalic diacid‐based monomers have been synthesized by inclusion in ring position 5 of a functionalized benzoylamine moiety. The functionalization includes a 12‐crown‐4 ether group fused with the benzene subunit and a dipodand substructure, formally a disubstitution of the benzene ring, with two sequences of ethyl‐terminated ethylene oxide units, which represent the open‐chain counterpart of the alicylic crown moiety. The polycondensation of the two diacids with five aromatic diamines yielded 10 new polyamides with crown or podand pendant substructures. The polyamides had previously been chemically characterized by NMR, IR, and elemental analysis. The polymers showed high glass transition temperatures of up to 349 °C, good thermal stability (Tdonset, N2 ≈ 400 °C), and improved solubility in organic solvents. The presence of acyclic or alicyclic oxyethylene sequences as crown ether or podand substructures and an additional amide side group per repeat unit made the polymers essentially amorphous and improved their water absorption ability in comparison with nonsubstituted polyamides. Water uptake values as high as 12% were observed at 65% relative humidity. All the polyamides showed a good film‐forming ability, and the mechanical properties of these films are considered to be satisfactory for experimental aromatic polyamides. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2270–2281, 2006  相似文献   

9.
A novel aromatic diamine,2-(5-(3,5-diaminophenyl)-l,3,4-oxadiazole-2-yl)pyridine(POBD),containing a pyridine ring and a 1,3,4-oxadiazole moiety,was synthesized.It was used in a polycondensation with various aromatic and aliphatic diacid chlorides to generate a series of new aromatic polyamides with pendant 1,3,4-oxadiazole groups.The prepared polyamides were characterized by IR,elemental analysis and through the synthesis of model compounds.Thermophysical properties of the synthesized polyamides have been studied by DSC,TGA and inherent viscosity measurements. Relatively high inherent viscosity values(0.76-1.62 dL/g,in 0.125%H2SO4 at 25℃) were observed for these compounds. Number average molecular weight(Mn) of the polymers was measured by vapor phase osmometry(VPO).The introduction of bulky side chains in the structure of aromatic polyamides led to increased solubility of these polymers in common polar and aprotic solvents,such as DMF,DMSO,NMP and DMAc,which allowed thin films to be cast from polymer solutions. The highest molecular weight(Mn = 51190) was observed for polymer(DC),which was prepared from pyridine-2,6-dichlorocarbonyl.  相似文献   

10.
Rigid aromatic polyesters containing alkoxy or phenyl-substituted oligophenyls were prepared. Soluble polymers were obtained also in cases where phenyl-substituted quinquephenyl diols were combined with asymmetric phenyl-substituted terephthalic acid. The synthesized polyesters were characterized by viscosimetry, gel permeation chromatography, thermal analysis, and dynamic mechanical analysis. The temperature dependence of the intrinsic viscosity was sensitive to the type of side groups. Thermogravimetry has shown that polyesters with aromatic substituents were stable up to 380–400°C. The glass transition temperatures of the polyesters with aromatic side groups were in the 220–260°C range as determined by DSC. Polyesters with hexyloxy side chains show crystallinity. Dynamic mechanical analysis showed that in the cases where aromatic substituents were used to increase solubility, the obtained polymers have very useful mechanical properties at high temperatures. The polymer having the quinquephenyl unit in the main chain has an almost constant modulus up to 340°C. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The effect that substitution of aromatic groups on the bisphenol connector unit of bisphenol-A based polycarbonate and polysulfone materials has on their gas transport properties was assessed. Replacement of a methyl group by a phenyl ring (bisphenol acetophenone polycarbonate, PC-AP, and bisphenol acetophenone polysulfone, PSF-AP) gives a small increase in permeability coefficients with similar or slightly higher selectivity for all gases compared to bisphenol-A polycarbonate, PC, or polysulfone, PSF. Substitution of two locked phenyl rings (fluorene bisophenol polycarbonate, FBPC, and fluorene bisphenol polysulfone, FBPSF) in place of the methyl groups in the connector unit leads to permeability and solubility coeffcients that are about twice those observed for PC or PSF. Increases in permeability for the polycarbonate and polycarbonate and polysulfone materials with aromatic substitutions are related to their larger fractional free volume. FBPC and FBPSF have the largest fractional free volume and the largest permeability coefficients. Thermal measurements show that the fluorene based polycarbonate and polysulfone materials have the highest thermal and oxidative stability. Such aromatic substitutions can be useful for developing gas separation membranes to be used in harsh thermal or oxidative environments. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Poly(methyl methacrylate) membranes of different fractional free volume (FFV) were prepared by dry casting from different solvents. Free volume data were determined by means of Bondi method and positron annihilation lifetime spectroscopy (PALS). It was found that both the boiling point and the solubility parameter of casting solvent affect the membrane’s free volume. It was believed that the difference in free volume was arisen from the difference in polymer packing.The gas permeability is higher when membranes are cast from higher molecular weight PMMA. But the plasticizing effect of CO2 is less serious compared with the low molecular weight one. The high molecular weight PMMA membrane also has an extremely high O2/N2 selectivity, indicating its high structure uniformity. These results indicate that membranes made from polymer of higher molecular weight have the advantages of high permeability, gas selectivity and are less sensitive to CO2 plasticization. The intrinsic gas transport properties such as the permeability, solubility and diffusivity of O2, N2, and CO2 are measured or calculated. The effects of fractional free volume on membrane gas separation properties were investigated. It was found that the fractional free volume had no definite effects on gas solubility, but the gas permeability and diffusivity increased accordingly to the measured free volume.  相似文献   

13.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

14.
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286  相似文献   

15.
Gas transport properties are reported for a series of compression-molded films prepared from copolyesters of hydroxybenzoic acid (HBA) and 2,6 hydroxynaphthoic acid (HNA) having 30/70, 58/42, 73/27, 75/25, and 80/20 mol % HBA/HNA. The mesomorphic and crystalline morphology of the materials was characterized using dynamic mechanical thermal analysis (DMTA), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction As evidenced by DMTA, the phenyl and naphthyl moieties of the HBA/HNA materials exhibit a significant degree of segmental mobility below the glass transition temperature. The nonlinear nature of the naphthyl unit leads to a more hindered rotation about the chain axis. Permeability measurements were made for He, H2, O2, N2, Ar, and CO2 at 35°C and the diffusivities were computed from time-lag data. As previously observed in these materials, the films exhibited excellent barrier properties resulting largely from very low gas solubility coefficients. The liquid-crystalline copolyester: (LCP) materials with the highest HNA content exhibit the best barrier properties. It appears that the more hindered motions of the naphthyl unit restrict penetrant mobility. The reduction in permeability with increased naphthyl unit content is accompanied by a very dramatic increase in selectivity between gas pairs. Fractional free volume analysis was used to correlate the transport properties of the LCP materials and other conventional polymers. A “two-phase” modification of the free volume correlation suggests that transport may likely occur in a small volume fraction of a less dense boundary phase.  相似文献   

16.
以含异丙基和三氟甲基结构二胺单体3,3′-二异丙基-4,4′-二胺基苯基-4″-三氟甲基甲苯(PATFT)与萘-1,4-二甲酸、间苯二甲酸和4,4-二苯醚二甲酸3种二酸通过膦酰化反应制备一系列新型可溶性聚酰胺,其相对分子量在3.8×104~9.6×104之间.结果表明,该聚合物具有优异的溶解性能,常温不仅能溶解于N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)等高沸点有机溶剂,在加热条件下甚至能较好的溶解在四氢呋喃、氯仿、二氯甲烷等低沸点溶剂中;突出的光学性能,截止波长范围在322~350 nm,80%的透过率波长范围为378~403 nm;良好的热学性能,玻璃化转变温度(Tg)范围在213~220?C,氮气氛围下5%和10%热失重温度范围分别为453~458?C和470~482?C.聚合物薄膜具有优异的机械性能,拉伸强度、杨氏模量、断裂伸长率分别对应为68~97 MPa,1.9~2.9 GPa,14.8%~16.7%.广角X-射线图谱表明聚合物为无定形态结构.  相似文献   

17.
Novel polyhydantoins ( PHYs ) were synthesized from original aromatic diisocyanates and bisiminoacetates by a two‐step polycondensation procedure, which involved the cyclization of polyurea intermediates promoted by acid catalysis. The physical properties of the novel PHYs were evaluated by comparing them with a classical PHY derived from 4,4′‐methylenediphenyl diisocyanate. All PHYs were soluble and could be processed into dense films, which showed good mechanical properties (tensile strength up to 110 MPa) and thermal stability of >400 °C. High glass transition temperatures (Tgs), ranging from 260 to 410 °C, were observed. Fractional free volume (FFV) was strongly dependent on the chemical structure, and a linear correlation between gas permeability and FFV of PHYs could be found. The gas separation properties were comparable to those of the commercial polyimide Matrimid®, with the exception of one of the PHYs which exhibited very promising properties as its gas productivity was comparable to the gas separation performance of well‐established experimental polyimides. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4052–4060  相似文献   

18.
Mean permeability coefficients for CO2, O2, N2, and CH4 in seven types of 6FDA polyimides with branched or extended diamine moieties were determined at 35.0°C (95.0°F) and at pressures up to 10.5 atm (155 psia). In addition, solubility coefficients for CO2, O2, N2, and CH4 in six of these polyimides were determined at 35.0°C and at 6.8 atm (100 psia). Mean diffusion coefficients for the six gas/polyimide systems were calculated from the permeability and solubility data. The relationships between the chemical structure of the polyimides, some of their physical properties (glass transition temperature, mean interchain spacing, specific free volume), and their gas permeability, diffusivity, and solubility behavior are discussed. The 6FDA polyimides studied here exhibit a considerably lower selectivity for the CO2/CH4 and O2/N2 gas pairs than 6FDA polyimides with short and stiff aromatic diamines with comparable CO2 and O2 permeabilities. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
<正>Long chain semiaromatic polyamides were synthesized by the reactions of decanediamine with various aromatic diacids and characterized by Fourier transform infrared spectroscopy(FT-IR) and nuclear magnetic resonance(~1H-NMR). The thermal behaviors were determined by differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA). The solubility,dynamic mechanical,physical and mechanical properties of the polyamides have also been investigated.The resultant polyamides have intrinsic viscosity ranging from 1.7 dL/g to 2.1 dL/g.Their melting temperatures range from 305℃to 343℃,and the glass transition temperatures fall in the range of 125-130℃.The tensile strength of the polyamides is above 100 MPa.  相似文献   

20.
Homopolyamides and copolyamides with structural characteristics such as bulky lateral substituents, non-coplanar, 2, 2′-dimethylbiphenylene units and comonomers of different length were prepared and their structure-property relations investigated. Polyamides with high solubilities and very low or no degree of crystallinity are obtainable by a combination of monomers with bulky lateral substituents and non-coplanar biphenylene units. These polyamides form tough, transparent films with good mechanical and thermal properties. Lyotropic liquid crystalline behavior was found in some cases for polyamides with non-coplanar biphenylene units. The incorporation of monomers with bulky substituents on the terephthalic acid unit lowers the chain stiffness and significantly influences the formation of lyotropic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号