首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isocratic RP-HPLC procedure has been developed and validated for the quantitative determination of ketoprofen in a topical gel. The HPLC procedure consist of a YMC ODS-AQ, 5-microm particle size analytical column (150 mm x 4.6 mm); Alltech Econosphere C18, 5-microm particle size guard column; detection at 233 nm; 1 ml/min flow rate; 20-microl injection volume. The mobile phase consisted of pH 3.5 phosphate buffer-water-acetonitrile (8:43:49, v/v). Sample preparation was a simple extraction of ketoprofen with mobile phase. The above conditions resolved and eluted ketoprofen, excipients, and potential degradants within 35 min, with ketoprofen eluting at about 6.5 min. The procedure was validated with respect to specificity, accuracy, precision, and linearity. The accuracy of the procedure, determined by spike recovery measurements, was 100.1-100.5%. The intra- and inter-day precisions were demonstrated by the relative standard deviations (RSD) of 0.3-0.6% and 0.5%, respectively. The intermediate precision was determined by comparing the results obtained with four independently prepared samples by two chemists using two columns on different days. The results indicate no significant difference (P = 0.17). The procedure showed linearity over the concentration range 4 x 10(-5) to 1 x 10(-1) mg/ml.  相似文献   

2.
An HPLC method was established and validated for the determination of compound FLZ, a synthetic novel anti-Parkinson's disease candidate drug, in rat plasma. FLZ and the internal standard bicyclol were extracted from plasma by solid-phase extraction method and analyzed on a Restek C18 column (4.6 x 250 mm, 5 microm) with a mobile phase consisting of methanol and water (60:40, v/v) at a flow rate of 1.0 mL/min. The detection wavelength was set at 320 nm. The calibration curve was linear within the concentration range from 25 to 500 ng/mL (r2 > 0.999), the limit of quantitation was 25 ng/mL and the average recovery was 92.0% with the RSD less than 5.9%. The relative standard deviation for intra- and inter-day precision was less than 3.8 and 6.9%, respectively. The established HPLC method was validated to be a simple, rapid and reliable procedure and applied to study the preclinical pharmacokinetics of FLZ in rat plasma, and it was the first time that the pharmacokinetics of FLZ had been investigated.  相似文献   

3.
A liquid chromatographic method with inductively coupled plasma mass spectrometry is proposed for the speciation of butyl- (monobutyltin, dibutyltin, tributyltin) and phenyl- (monophenyltin, diphenyltin, triphenyltin) tin compounds in sediments. After evaluation of different additives in the mobile phase, the use of 0.075% (w/v) of tropolone and 0.1% (v/v) of triethylamine in a mobile phase of methanol-acetic acid-water (72.5:6:21.5) allowed the best chromatographic separation of the six compounds. Pressurized liquid extraction (PLE) with a methanolic mixture of 0.5 M acetic acid and 0.2% (w/v) of tropolone was suitable for the quantitative extraction of butyl- and phenyltin compounds with recovery values ranging from 72 to 102%. This analytical approach was compared to conventional solvent extraction methods making use of acids and/or organic solvent of medium polarity. The main advantages of PLE over conventional solvent extraction are: (i) the possibility to extract quantitatively DPhT and MPhT from sediments, which could not be done by a solvent extraction approach; (ii) to preserve the structural integrity of the organotin compounds; (iii) to reduce the extraction time from several hours in case of solvent extraction techniques to just 30 min. For spiked sediments, limits of detection ranged from 0.7 to 2 ng/g of tin according to the compound. The relative standard deviations were found to be between 8 and 15%. The developed analytical procedure was validated using a reference material and was applied to various environmental samples.  相似文献   

4.
A rapid, simple and validated method based on liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) has been developed for the determination of granisetron in human plasma. Plasma samples were pre‐purified by protein precipitation procedure. The chromatographic separation was achieved with Synergi Polar‐RP (75 × 2 mm, 4 µm) column using a mixture of 5 mm pH4.0 ammonium formate and methanol (300:316, v/v) under isocratic conditions at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The analysis time was about 2.5 min. The method was fully validated over the concentration range 0.1–10 ng/mL. The lower limit of quantification was 0.1 ng/mL. Inter‐ and intra‐batch precision was <6.1% and the accuracy was within 95.6–100.0%. The mean extraction recovery was 96.3%. Selectivity, matrix effect and stability were also validated. The method was applied to the comparative pharmacokinetic study of granisetron in Chinese healthy subjects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Kaletra is an important antiretroviral drug, which has been developed by Abbott Laboratories. It is composed of lopinavir (low-pin-a-veer) and ritonavir (ri-toe-na-veer). Both have been proved to be human immunodeficiency virus (HIV) protease inhibitors and have substantially reduced the morbidity and mortality associated with HIV-1 infection. We have developed and validated an assay, using liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry (LC/MS/MS), for the routine quantification of lopinavir and ritonavir in human plasma, in which lopinavir and ritonavir can be simultaneously analyzed with high throughput. The sample preparation consisted of liquid-liquid extraction with a mixture of hexane: ethyl acetate (1:1, v/v), using 100 microL of plasma. Chromatographic separation was performed on a Waters Symmetry C(18) column (150 mm x 3.9 mm, particle size 5 microm) with reverse-phase isocratic using mobile phase of 70:30 (v/v) acetonitrile: 2 mM ammonium acetate aqueous solution containing 0.01% formic acid (v/v) at a flow rate of 1.0 mL/min. A Waters symmetry C(18) guard column (20 mm x 3.9 mm, particle size 5 microm) was connected prior to the analytical column, and a guard column back wash was performed to reduce the analytical column contamination using a mixture of tetrahydrofuran (THF), methanol and water (45:45:10, v/v/v). The analytical run was 4 min. The use of a 96-well plate autosampler allowed a batch size up to 73 study samples. A triple-quadrupole mass spectrometer was operated in a positive ion mode and multiple reaction monitoring (MRM) was used for drug quantification. The method was validated over the concentration ranges of 19-5,300 ng/mL for lopinavir and 11-3,100 ng/mL for ritonavir. A-86093 was used as an internal standard (I.S.). The relative standard deviation (RSD) were <6% for both lopinavir and ritonavir. Mean accuracies were between the designed limits (+/-15%). The robust and rapid LC/MS/MS assay has been successfully applied for routine assay to support bioavailability, bioequivalence, and pharmacokinetics studies.  相似文献   

6.
Olanzapine is an atypical antipsychotic drug from the thienobenzodiazepine family which displays efficacy in patients with schizophrenia and related psychoses. A novel LC/MS method was developed and validated for determination of olanzapine in schizophrenia patients' plasma. A liquid–liquid extraction procedure was carried out using 5 mL diethyl ether–diisopropyl ether mixture (1:1, v/v). Average recovery of the extraction procedure was 94.8%. Chromatographic separation was performed on reversed‐phase C18 column (250 × 2.0 mm, 5 μm) using mixture of deionized water (trifluoro acetic acid 0.1%)–acetonitrile (20:80, v/v) as mobile phase at a flow rate of 1 mL/min. Irbesartan was used as internal standart and total run time was 2.5 min. Mass spectrometric analysis were carried out in selective‐ion montoring mode, and detected olanzapine at m/z 313.1 and IS at m/z 429.4 in all forms of the ions. The calibration curve of olanzapine was linear in the range 2–300 ng/mL (r2 > 0.9993). The interday and intraday precisions (RSD) were <7.55%, and accuracy was >7.59% (n = 6). The proposed study was successfully validated with respect to the US Food and Drug Administration guidelines.  相似文献   

7.
Based on an official standard method of lutein analysis, an improved high performance liquid chromatography (HPLC) method for simultaneously detecting lutein and zeaxanthin was developed as focusing on the sample preparation protocol. The optimal pretreatment conditions included a saponification in a water bath for 15?min at a constant temperature of 50?°C, using a 10?mL 60% (w/v) potassium hydroxide solution, followed by extraction using 100?mL mixture of n-hexane, ethyl ether and cyclohexane (40: 40: 20, v/v/v). A mixture of dichloromethane, acetonitrile and methanol (20: 30: 50, v/v/v) was validated to elute lutein and zeaxanthin on a C30 column (4.6?×?250?mm, 5?µm). The resolution between lutein and zeaxanthin is ≥2.5. A millet sample was used for methodological verification and the results showed that the linear relations for lutein and zeaxanthin were good in ranges of 0.23–9.37?μg/mL and 0.30–12.02?μg/mL, respectively. The relative standard deviations of lutein and zeaxanthin were 1.40% and 5.09%, respectively, and their spiked recoveries were between 86.60% and 98.75%. The lutein and zeaxanthin results from this modified HPLC method are superior to those from the Chinese official method and ultrasonic extraction method.  相似文献   

8.
The aim of this work was to optimize an ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons (PAHs) in sediments and to compare it with the reflux procedure using methanolic potassium hydroxide. Sample extracts were purified with a miniaturized silica gel chromatographic column and analyzed by gas chromatography-mass spectrometry (GC-MS). Ultrasonication using n-hexane-acetone (1:1, v/v) solvent mixture on dried homogenized marine sediment gave better precision (smaller relative standard deviation (RSD) values) and comparable quantities of individual PAH's compared to the reflux procedure. Ultrasonication with the n-hexane-acetone (1:1, v/v) mixture, utilizing four 15 min extraction cycles, was found to be sufficient for extracting PAHs from wet sediments. The optimized ultrasonic extraction procedure extracted aliphatic and aromatic hydrocarbons from the National Institute of Standards and Technology SRM 1941a with recoveries greater than 90%. The major advantages of ultrasonication compared to the reflux method are the lower extraction times, simplicity of the apparatus and extraction procedure. The optimized ultrasonication procedure has been used in our laboratory to extract hydrocarbons from naturally wet sediments from rivers, and coastal and marine areas.  相似文献   

9.
A rapid, sensitive and specific high-performance liquid chromatography-electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the first time to determine the concentration of lafutidine in human plasma. After the addition of diazepam (the internal standard, IS) and 1 M sodium hydroxide solution to 0.5-ml plasma sample, lafutidine was extracted from plasma with n-hexane : isopropanol (95 : 5, v/v). The organic layer was evaporated and the residue was redissolved in 200-microl mobile phase. The analyte was chromatographically separated on a prepacked Shimadzu Shim-pack VP-ODS C(18) column (250 x 2.0 mm i.d.) using a mixture of methanol-water (20 mM CH(3)COONH(4)) = 80 : 20 (v/v) as mobile phase. Detection was performed on a single quadrupole mass spectrometer using an electrospray ionization interface and the selected-ion monitoring (SIM) mode. The method showed excellent linearity (r = 0.9993) over the concentration range of 5-400 ng/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation. The limit of detection was 1 ng/ml. The validated LC/ESI-MS method has been successfully applied to the bioequivalence study of lafutidine in 24 healthy male Chinese volunteers.  相似文献   

10.
A rapid pioneering method has been developed to simultaneously determine residues of three pesticides (thiamethoxam, clothianidin, and metazachlor) in soil by ultrahigh performance liquid chromatography coupled to a mass spectrometry detector (quadrupole time‐of‐flight). An efficient extraction procedure (90–105% average analyte recoveries) has also been proposed, involving solid–liquid extraction by a mixture of water and methanol (60:40, v/v), centrifugation, and concentration. A chromatographic analysis of the compounds was achieved in 5.5 min by means of a core–shell technology based column (Kinetex® EVO C18, 50 × 2.1 mm, 1.7 μm, 100 Å). The mobile phase (0.3 mL/min, gradient elution mode) consisted of 0.1% v/v formic acid in water and 0.1% v/v formic acid in acetonitrile. The method was fully validated in terms of selectivity, detection and quantification limits, matrix effect, linearity, trueness, and precision. Low limits of detection and quantification were obtained, ranging from 0.2 to 3.0 μg/kg, which are similar to those published in previous studies, while the absence of a significant matrix effect allowed quantification of the pesticides with standard calibration curves. The proposed method was applied for an analysis of pesticides in several soil samples from experimental fields dedicated to oilseed rape cultivars.  相似文献   

11.
Simultaneous HPLC determination of the analgetic agent tramadol, its major pharmacodynamically active metabolite (O-desmethyltramadol) in human plasma is described. Simple methods for the preparation of the standard of the above-mentioned tramadol metabolite and N1,N1-dimethylsulfanilamide (used as the internal standard) are also presented. The analytical procedure involved a simple liquid-liquid extraction of the analytes from the plasma under the conditions described previously. HPLC analysis was performed on a 250x4 mm chromatographic column with LiChrospher 60 RP-selectB 5-microm (Merck) and consists of an analytical period where the mobile phase acetonitrile-0.01 M phosphate buffer, pH 2.8 (3:7, v/v) was used, and of a subsequent wash-out period where the plasmatic ballast compounds were eluted from the column using acetonitrile-ultra-high-quality water (8:2, v/v). The whole analysis, including the equilibration preceding the initial analytical conditions lasted 19 min. Fluorescence detection (lambda(ex) 202 nm/lambda(em) 296 nm for tramadol and its metabolite, lambda(ex) 264 nm/lambda(em) 344 nm for N1,N1-dimethylsulfanilamide) was used. The validated analytical method was applied to pharmacokinetic studies of tramadol in human volunteers.  相似文献   

12.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of abiraterone (ART) in rat plasma. The analytical procedure involves extraction of ART and diclofenac (internal standard, IS) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system with a Betasil C18 column maintained at ambient room temperature and an isocratic mobile phase [acetonitrile–water–10 mm potassium dihydrogen phosphate (pH 3.0), 55:5:40, v/v/v] at a flow rate of 1.00 mL/min with a total run time of 10 min. The eluate was monitored using an UV detector set at 255 nm. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 93.4–3251 ng/mL (r2 = 0.997). The intra‐ and inter‐day precisions were 0.56–4.98 and 3.03–7.18, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study of ART in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive and rapid LC‐MS/MS‐ESI method has been developed and validated for simultaneous quantification of the carisoprodol and aspirin in human plasma. Carisoprodol was detected in positive ion mode, whereas aspirin was detected in negative ion mode. Carbamazepine and furosemide were used as internal standards (IS) for quantification of carisoprodol and aspirin, respectively. The extraction procedure involves a liquid–liquid extraction method with ter‐butyl methyl ether. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl (4.6 × 75 mm, 3.5 µm) column using an isocratic mobile phase (5 mm ammonium acetate:methanol, 20:80, v/v) at a flow rate of 0.8 mL/min with a total run time of 2.2 min. A detailed method validation was performed as per the FDA guidelines. The standard curves found to be linear in the range of 25.5–4900 and 15.3–3000 ng/mL for carisoprodol and aspirin, respectively. The results met the acceptance criteria. Carisoprodol and aspirin were found to be stable in various stability studies. The validated method was successfully applied to a pharmacokinetic study following co‐administration of carisoprodol (250 mg) and aspirin (75 mg) tablets by oral route to human volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A microbiological assay and a liquid chromatographic method were validated for quantitation of moxifloxacin in tablets. The microbiological method consisted of a cylinder-plate agar diffusion assay using Micrococcus luteus ATCC 9341 as the test microorganism and phosphate buffer (0.1M, pH 8.0) as the diluent solution. The response graphs for standard and sample solutions were linear (r = 0.9479), and no parallelism deviations were detected in the tested levels of concentration (4.0, 8.0, and 16.0 microg/mL). The interday precision was 2.73%. Recovery values were between 96.25 and 100.5%. The chromatographic analyses were performed using a Shim-pack CLC-ODS column (250 x 4.6 mm, 5 microm) with a mobile phase consisting of (A) a mixture of phosphoric acid (0.17%, v/v) with tetramethylammonium hydroxide (0.05M) and acetonitrile (95 + 5, v/v) and (B) methanol (55 + 45, v/v) adjusted to pH 3.0. The flow rate was 1.0 mL/min, and detection was made at 294 nm. The method was linear in a range from 12.0 to 42 microg/mL (r = 0.9999), and the interday precision was 1.39%. Recovery ranged between 101.9 and 103.81%. Both validated methods were used to quantify the moxifloxacin content in tablets exposed to ultraviolet radiation, and similar results were obtained.  相似文献   

16.
A high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method for simultaneous screening and quantification of 28 drugs was developed and validated for 2.5 mg hair samples. Target drugs and their metabolites included amphetamines, cocaine, opioids, benzodiazepines, antidepressants, and hallucinogens. After decontamination, hair samples were extracted with 200 μL of a mixture of water: acetonitrile:1 M trifluoroacetic acid (80:10:10, v/v) using a 5 min simultaneous pulverization/extraction step. The extracts were analysed by HPLC-HRMS in an Orbitrap at a nominal resolution of 60,000, with concomitant in source collisional experiments (in source CID). Gradient elution on an Atlantis T3 column resolved 28 target compounds and 5 internal standards. Total chromatographic run time was 26 min. Calibration was achieved by linear regression analysis utilizing six calibration points; R2 ranged from 0.9964 to 0.9999, the limits of quantification were 0.1 ng/mg for 8 compounds, 0.2 ng/mg for 16 compounds and 0.5 ng/mg for 4 compounds; mean relative errors from -21% to +23% were obtained; relative standard deviation, used to estimate repeatability and intermediate reproducibility at three concentrations, was always less than 20%. Process efficiency and recoveries for all analytes were better than 65 and 73%, respectively, at any concentration. The method was applied to hair samples from forensic investigations that contained a broad assortment of drugs of abuse and pharmaceuticals. The use of concomitant HRMS full scan and CID afforded the possibility of retrospective analysis for discovering untargeted drugs.  相似文献   

17.
A simple high-performance liquid chromatographic method with ultraviolet detection is proposed for the estimation of diclofenac potassium and drotaverine hydrochloride in human plasma. Liquid-liquid extraction was carried out with a mixture of dichloromethane-isopropyl alcohol (80:20, v/v). Chromatographic separation of the analytes and internal standard was achieved on an analytical 250 × 4.6 mm i.d. reversed-phase Thermo BDS Hypersil C8 (5 μm particle size) column using a mobile phase of acetonitrile-0.02M ammonium acetate buffer (53:47, v/v) at pH 3.5. The run time was less than 15 min. Column eluate was monitored at 230 nm. The linearity over the concentration ranges of 25-1500 ng/mL and 32-960 ng/mL was obtained for diclofenac potassium and drotaverine hydrochloride, respectively. The limit of quantification was 25 and 32 ng/mL for diclofenac potassium and drotaverine hydrochloride, respectively. Recoveries of diclofenac potassium and drotaverine hydrochloride from plasma were 97.45% and 98.27%, respectively.  相似文献   

18.
In this study, a sensitive HPLC‐UV assay was developed and validated for the determination of LASSBio‐1736 in rat plasma with sodium diclofenac as internal standard (IS). Liquid–liquid extraction using acetonitrile was employed to extract LASSBio‐1736 and IS from 100 μL of plasma previously basified with NaOH 0.1 M. Chromatographic separation was carried on Waters Spherisorb®S5 ODS2 C18 column (150 × 4.6 mm, 5 μm) using an isocratic mobile phase composed by water with triethylamine 0.3% (pH 4), methanol and acetonitrile grade (45:15:40, v/v/v) at a flow rate of 1 mL/min. Both LASSBio‐1736 and IS were eluted at 4.2 and 5 min, respectively, with a total run time of 8 min only. The lower limit of quantification was 0.2 μg/mL and linearity between 0.2 and 4 μg/mL was obtained, with an R2 > 0.99. The accuracy of the method was >90.5%. The relative standard deviations intra and interday were <6.19 and <7.83%, respectively. The method showed the sensitivity, linearity, precision, accuracy and selectivity required to quantify LASSBio‐1736 in preclinical pharmacokinetic studies according to the criteria established by the US Food and Drug Administration and European Medicines Agency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A high-performance liquid chromatographic method was optimized and validated for the determination of atenolol and chlorthalidone (CT) in human breast milk. The milk samples were extracted and purified using ACN and phosphoric acid for precipitation of proteins followed by removal of ACN and milk fats by extraction with methylene chloride. The samples were applied, after an extraction procedure, to a cyanide column using a mobile phase consisting of ACN/water (35:65 v/v) and buffered at pH 4.0 with flow rate of 1.0 mL/min. Quantitation was achieved with UV detection at 225 nm using guaifenesin as the internal standard. The effectiveness of protein precipitation and clean up procedure were investigated. The method was validated over the range of 0.3-20 microg/mL for atenolol and 0.25-5 microg/mL for CT.  相似文献   

20.
A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of lovastatin in human plasma. With simvastatin as internal standard, sample pretreatment involved one-step extraction with n-hexane-methylene dichloride-isopropanol (20:10:1, v/v/v) of 0.5 mL plasma. Chromatographic separation was carried out on an Acquity UPLC BEH C(18) column with mobile phase consisting of acetonitrile-water (containing 5 mmol/L ammonium acetate; 85:15, v/v) at a flow-rate of 0.35 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization source with positive mode. The analysis time was shorter than 1.7 min per sample. The standard curve was linear (r2>or=0.99) over the concentration range 0.025-50.0 ng/mL with a lower limit of quantification of 0.025 ng/mL. The intra- and inter-day precision values were below 11% and the accuracy (relative error) was within 6.0% at three quality control levels. This is the first method of MS with MRM coupled to UPLC for the determination of lovastatin, which showed great advantages of high sensitivity, selectivity and high sample throughput. It was fully validated and successfully applied to the pharmacokinetic study of lovastatin tablets in healthy Chinese male volunteers after oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号