首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we deal with the null geodesics extending from the near-horizon region out to a distant observatory in an extremal Kerr–Newman black hole background. In particular, using the matched asymptotic expansion method, we analytically solve the null geodesics near the superradiant bound in the form of algebraic equations. For the case that the photon trajectories are limited in the equatorial plane, the shifts in the azimuthal angle and time are obtained.  相似文献   

2.
We study analytically   the fundamental resonances of near-extremal, slowly rotating Kerr–Newman black holes. We find a simple analytic expression for these black-hole quasinormal frequencies in terms of the black-hole physical parameters: ω=mΩ−2iπTBH(l+1+n)ω=mΩ2iπTBH(l+1+n), where TBHTBH and Ω are the temperature and angular velocity of the black hole. The mode parameters l and m   are the spheroidal harmonic index and the azimuthal harmonic index of a co-rotating mode, respectively. This analytical formula is valid in the regime ℑω?ℜω?M−1ω?ω?M−1, where M is the black-hole mass.  相似文献   

3.
We consider the tunnelling of charged spin 1/2 fermions from a Kerr–Newman black hole and demonstrate that the expected Hawking temperature is recovered. We discuss certain technical subtleties related to the obtention of this result.  相似文献   

4.
5.
《Physics letters. A》1999,259(1):1-6
An order parameter is introduced in describing the singular thermodynamical behaviour of Kerr–Newman black holes in the vicinity of a certain critical temperature. The mean square fluctuation of the order parameter is calculated. The analogy between the critical temperature of a black hole and the Hagedorn temperature in hadronic physics and string theory is discussed.  相似文献   

6.
We construct a gedanken experiment, in which a weak wave packet of the complex massive scalar field interacts with a four-parameter (mass, angular momentum, electric and magnetic charges) Kerr–Newman black hole. We show that this interaction cannot convert an extreme the black hole into a naked sigularity for any black hole parameters and any generic wave packet configuration. The analysis therefore provides support for the weak cosmic censorship conjecture.  相似文献   

7.
We extend the classical Damour–Ruffini method and discuss Hawking radiation in Kerr–Newman–de Sitter (KNdS) black hole. Under the condition that the total energy, angular momentum and charge of spacetime are conserved, taking the reaction of the radiation of the particle to the spacetime and the relation between the black hole event horizon and the cosmological horizon into consideration, we derive the black hole radiation spectrum. The radiation spectrum is no longer a pure thermal one. It is related to the change of the Bekenstein–Hawking entropy corresponding the black hole event horizon and the cosmological horizon. It is consistent with the underlying unitary theory.  相似文献   

8.
Using the null-geodesic tunneling method of Parikh and Wilczek, we derive the Hawking temperature of a general four-dimensional rotating black hole. In order to eliminate the motion of ? degree of freedom of a tunneling particle, we have chosen a reference system that is co-rotating with the black hole horizon. Then we give the explicit result for the Hawking temperature of the Kerr–Newman–AdS black hole from the tunneling approach.  相似文献   

9.
Previously we have investigated the cosmic wiggly strings in (3 + 1)-dimensional Schwarzschild, Reissner–Nordström and Kerr black holes. As an extension the solutions in (3 + 1)-dimensional axially symmetric charged rotating black hole are investigated. The solutions for the wiggly string exhibit open strings lying in the radial direction in the equatorial plane outside the horizon.  相似文献   

10.
11.
A thought experiment considered recently in the literature, in which it is investigated whether a dyonic Kerr–Newman black hole can be destroyed by overcharging or overspinning it past extremality by a massive complex scalar test field, is revisited. Another derivation of the result that this is not possible, i.e. the weak cosmic censorship is not violated in this thought experiment, is given. The derivation is based on conservation laws, on a null energy condition, and on specific properties of the metric and the electromagnetic field of dyonic Kerr–Newman black holes. The metric is kept fixed, whereas the dynamics of the electromagnetic field is taken into account. A detailed knowledge of the solutions of the equations of motion is not needed. The approximation in which the electromagnetic field is fixed is also considered, and a derivation for this case is also given. In addition, an older version of the thought experiment, in which a pointlike test particle is used, is revisited. The same result, namely the non-violation of the cosmic censorship, is rederived in a way which is simpler than in earlier works.  相似文献   

12.
It is well known that the Kerr–NUT–AdS–dS black hole admits two linearly independent Killing vectors and possesses a hidden symmetry generated by a rank-2 Killing tensor. The near-horizon geometry of an extremal Kerr–NUT–AdS–dS black hole admits four linearly independent Killing vectors, and we show how the hidden symmetry of the black hole itself is carried over by means of a modified Killing–Yano potential which is given explicitly. We demonstrate that the corresponding Killing tensor of the near-horizon geometry is reducible as it can be expressed in terms of the Casimir operators formed by the four Killing vectors.  相似文献   

13.
Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr–de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.  相似文献   

14.
This paper is devoted to studying the impact of thermal fluctuations on thermodynamics of rotating as well as charged anti-de Sitter black holes with the Newman–Unti–Tamburino(NUT)parameter. To this end, we derive the analytic expression of thermodynamic variables, namely the Hawking temperature, volume, angular velocity, and entropy within the limits of extended phase space. These variables meet the first law of thermodynamics as well as the Smarr relation in the presence of new NUT charge. To analyze the effects of quantum fluctuations, we derive the exact expression of corrected entropy, which yields modification in other thermodynamical equations of state. The local stability and phase transition of the considered black hole are also examined through specific heat. It is found that the NUT parameter increases the stability of small black holes, while the logarithmic corrections induce instability in the system.  相似文献   

15.
The area spectra of extreme Kerr and nearly extreme Kerr–Newmann black holes are investigated from quasinormal modes via Maggiore’s physical interpretation of quasinormal modes. Using the first law of black hole thermodynamics and the action variable quantization, we arrive at consistent equally spaced area and entropy spectra. Results show that the spectra are irrelevant to the parameters of the black holes and the perturbation fields, which fully agree with Bekensteins original conjecture. In the calculations, we have defined the corresponding Hawking temperatures of the black holes following the suggestion of Mäkelä et al. to avoid the zero temperature and to guarantee the (nearly-) extreme black holes quantizable.  相似文献   

16.
A coordinate system that blockwise-simplifies the Kerr–Newman black hole’s thermodynamical state space Ruppeiner metric geometry is constructed, with discussion of the limiting cases corresponding to simpler black holes. It is deduced that one of the three conformal Killing vectors of the Reissner–Nordström and Kerr cases (whose thermodynamical state space metrics are 2 by 2 and conformally flat) survives generalization to the Kerr–Newman case’s 3 by 3 thermodynamical state space metric.  相似文献   

17.
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariant metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points.  相似文献   

18.
19.
20.
After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be derived by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr–Newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman–Janis algorithm works, many physicist considering it to be an ad hoc procedure or fluke and not worthy of further investigation. Contrary to this belief this paper shows why the Newman–Janis algorithm is successful in obtaining the Kerr–Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman–Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein–Maxwell equations is the Kerr–Newman metric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号