首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission and excitation spectra of Gd2SiO5∶Eu3+ were investigated using the VUV beam line of the Beijing Synchrotron Radiation Facility (BSRF). The experimental results were discussed in the frame of visible quantum cutting process involved in Gd3+−Eu3+ system. Upon direct excitation into the6G J states of Gd3+, two visible photon emissions from Eu3+ were observed. Cursory evaluation proved that Gd2SiO5∶Eu3+ is an efficient visible quantum cutter.  相似文献   

2.
This paper reports on the results of EPR studies of mixed CeO2-Y2O3 crystals (including nanosized crystals) doped by gadolinium ions. It is revealed that the width of the line corresponding to the allowed transition 1/2 ↔ −1/2 between the Kramers-conjugated states |±1/2〉 of the Gd3+ ion decreases with a decrease in the powder size from macrosizes to nanosizes. The observed dependence can be due to the increase in the unit cell size during grinding of the samples.  相似文献   

3.
A Cu2+-doped single crystal of catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-m-cyanopaladate(II) [ZnPd(CN)4(C4H12N2O2)] complex has been investigated by electron paramagnetic resonance (EPR) technique at room temperature. EPR spectra indicate that Cu2+ ions substitute for magnetically equivalent Zn2+ ions and form octahedral complexes in [ZnPd(CN)4(C4H12N2O2)] hosts. The crystal field affecting the Cu2+ ion is nearly axial. The optical absorption studies show two bands at 322 nm (30864 cm−1) and 634 nm (15337 cm−1) which confirm the axial symmetry. The spin Hamiltonian parameters and the relevant wave function are determined.  相似文献   

4.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

5.
The vibration frequencies of unstable ferroelectric and antiferrodistortion modes and the dependences of the energy on the ion displacement amplitude have been calculated within the generalized Gordon-Kim model for distortions along eigenvectors of these modes in the mixed compounds Sr1 − x A x Ti1 − x /4 x/4O3 and Sr1 − y A 2y /3 y/3TiO3 (A = Sc3+, In3+, La3+, Bi3+; □ is the vacancy). To compensate an excess positive charge, vacancies are introduced into the Ti4+ or Sr2+ site. Calculations have been performed in the “daverage” crystal approximation for impurity concentrations of 0.25 and 0.50. To this end, a set of 40 atomic superlattices with various orderings of heterovalent ions Sr2+ and impurity A 3+ has been considered. It has been found that each impurity type, independently of charge balance, induces ferroelectric instabilities in doped compounds. In the case of doping with In3+ and La3+ for concentration x = 0.25, the possibility of rotating the polarization vector has been shown.  相似文献   

6.
The effect of irradiation by ultraviolet light on the effective magnetic moment of a paramagnetic single crystal based on photochrome spiropyran (Sp) and chromium oxalates Sp3Cr(C2O4)3 molecules is detected. It is shown that the deviation of the temperature dependence of the magnetic moment from the Curie law is caused not by the exchange interaction, but by electron redistribution between Cr3+ and Cr4+ ions and spiropyran molecules Sp0 and Sp+. Analysis of the angular dependence of EPR spectra makes it possible to determine the contribution of Cr3+ ions to the magnetic properties of the crystals and to determine the crystal field parameters D = 0.619 cm−1 and E = 0.024 cm−1. Irradiation of hydrated samples by ultraviolet light leads to intensity redistribution of EPR lines attributed to Cr3+ and Sp0. Thermally stimulated paramagnetism of triplet states of spiropyran ions Sp+ and the SpI salt is observed.  相似文献   

7.
The atomic and magnetic structures of La0.5Ca0.5CoO3 cobaltite have been studied by the neutron diffraction technique at high pressures of up to 4 GPa in the 10- to 300-K temperature range. The pressure dependences of the structural parameters have been obtained. The Curie temperature increases with the pressure with the coefficient dT C/dP = 1 K/GPa, demonstrating the stability of the ground ferromagnetic (FM) state. The pressure dependence of the ground FM state in La0.5Ca0.5CoO3 is in drastic contrast with that for La1 − x Ca x CoO3 at a lower calcium content (x < 0.3). For the latter compound, the pressure suppressed the ground FM state and a large negative pressure coefficient of the Curie temperature (dT C/dP ∼ −10 K/GPa) was observed. The nature of such a phenomenon is analyzed in the framework of the double exchange model also taking into account the changes in the electron configuration of Co3+ ions.  相似文献   

8.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

9.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

10.
The electron paramagnetic resonance (EPR) spectra of Ce3+ and Nd3+ impurity ions in unoriented powders of the YBa2Cu3O6.13 compound are observed and interpreted for the first time. It is demonstrated that, upon long-term storage of the samples at room temperature, the EPR signals of these ions are masked by the spectral line (with the g factor of approximately 2) associated with the intrinsic magnetic centers due to the significant increase in its intensity.  相似文献   

11.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

12.
Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF4:U3+ and LiYF4:Yb3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10–20 K. The U3+ ion spectrum is characterized by g-factors g = 1.228 and g = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A = 81 G and A = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF4:Yb3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of f-electrons with ligands into these parameters is discussed. Authors' address: Igor N. Kurkin, Kazan State University, Kremlevskaya ulitsa 18, Kazan 420008, Russian Federation  相似文献   

13.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

14.
This paper reports on the spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glasses with different Tm2O3 doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm−2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm3+, cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm2O3 doping concentrations. The maximum fluorescence intensity at around 1.8 μm has been obtained in Tm2O3-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm3+ in this sample is about 0.48 × 10−20 cm2 at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm3+-doped BaF2-Ga2O3-GeO2- La2O3 glass for 2.0-μm optical fiber laser.  相似文献   

15.
High-frequency electron paramagnetic resonance (EPR) spectra of the KPb2Cl5:Tb3+ crystal have been investigated. Three types of spectra were observed in the frequency range of 74–200 GHz. The most intensive spectrum with the resolved hyperfine structure corresponded to transitions between sublevels of the159Tb3+ ground quasi-doublet with the zero-field splitting (ZFS) close to 48 GHz. Experimental results were analyzed by the exchange charge model of the crystal field affecting terbium ions in low-symmetry Pb2+ positions with the chlorine sevenfold coordination and the charge compensating vacancy in the nearest potassium site. The calculated values ofg-factors and ZFS were in agreement with the experimental data. The nature of a broad EPR line with ZFS of about 180 GHz and of additional weak EPR lines observed as satellites of the main Tb3+ lines was discussed.  相似文献   

16.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

17.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

18.
The heat capacity of the manganite La0.87K0.13MnO3 has been measured in the temperature range 80–350 K. The nature of the ferromagnetic phase transition and the critical properties of heat capacity near the Curie temperature have been studied. The regularities of variations in the universal critical parameters near the phase transition point have been established. The calculated critical exponent and amplitudes of the heat capacity with allowance for corrections on the scaling (α = −0.13 and A +/A = 1.178) correspond to the critical behavior of the 3D Heizenberg model.  相似文献   

19.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

20.
The electron paramagnetic resonance (EPR) parameters (g andg factors and hyperfine structure constantsA ,A ) for Co2+ in Ca(OH)2 are studied from the second-order perturbation formulas on the basis of the cluster approach. In these formulas, the contributions to EPR parameters from the state interactions and covalency effects are considered and the parameters related to both effects are obtained from the optical spectra and impurity structure of the studied system. From the study, it is found that the β angle between the metal-ligand bond and the C3 axis changes from 61° in a pure crystal to 53.68(26)° in the impurity center of a Co2+-doped Ca(OH)2 crystal because of the impurity-induced local lattice relaxation. The reduction of the angle β in the impurity center is also supported by the result obtained by analyzing the EPR zero-field splitting for Mn2+ in the same Ca(OH)2 crystal. The EPR parameters of Ca(OH)2:Co2+ are also reasonably explained by considering the suitable local lattice relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号