首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang M  Liu YQ  Ye BC 《The Analyst》2012,137(3):601-607
A colorimetric assay has been developed for parallel detection of Cd(2+), Ni(2+) and Co(2+) utilizing peptide-modified gold nanoparticles (P-AuNPs) as a sensing element based on its unique surface plasmon resonance properties. The functional peptide ligand, CALNNDHHHHHH, was self-assembled on gold nanoparticles (AuNPs) to produce P-AuNPs probe. The P-AuNPs probe could be used to simultaneously detect and showed different responses to the three ions Cd(2+), Ni(2+) and Co(2+) in an aqueous solution based on the aggregation-induced color change of AuNPs. The method showed good selectivity for Cd(2+), Ni(2+) and Co(2+) over other metal ions, and detection limit as low as 0.05 μM Cd(2+), 0.3 μM Ni(2+) or 2 μM Co(2+). To simultaneously (or parallel) detect the three metal ions coexisting in a sample, EDTA and imidazole were applied to mask Co(2+) and Ni(2+) for detecting Cd(2+), glutathione and EDTA were applied to mask Cd(2+) and Co(2+) for detecting Ni(2+), and glutathione and imidazole were applied to mask Cd(2+) and Ni(2+) for detecting Co(2+). Finally, the simple and cost-effective probe could be successfully applied for simultaneously detecting Cd(2+), Ni(2+), and Co(2+) in river water. Because this novel P-AgNPs-based probe design offers many advantages, including simplicity of preparation and manipulation compared with other methods that employ specific strategies, the sensing system shows potential application in the developing region for monitoring water quality.  相似文献   

2.
A rhodamine spirolactam/2-hydrazinopyridine derivative was synthesized and characterized, which exhibited high selectivity to Cu(2+) over other metal cations. The Cu(2+) recognition of this rhodamine derivative could be detected by fluorescence spectra, absorption spectra and an obvious color change which was observed easily by naked-eyes. The binding of this rhodamine derivative to Cu(2+) is instantaneous and sensitive. Moreover, a linear relationship was found between the fluorescence intensity at 575 nm from 0.5×10(-6) M to 3.0×10(-6) M of Cu(2+) concentration, and the limit of detection (LOD) was at low concentration of 2.11×10(-8) M, this would benefit for the establishment of standard working curves in practical Cu(2+) detection. Additionally, we synthesized rhodamine spirolactam/2-aminomethylpyridine derivative and rhodamine spirolactam/phenylhydrazine derivative as analogs for elucidate the structure-recognition relationships. Finally, we prepared the test strips of rhodamine spirolactam/2-hydrazinopyridine derivative for practical chromogenic the Cu(2+) detection.  相似文献   

3.
Xu H  Wang Y  Huang X  Li Y  Zhang H  Zhong X 《The Analyst》2012,137(4):924-931
In this work, we report a colorimetric assay for the screening of biothiols including glutathione (GSH), cysteine (Cys), and homocysteine (Hcys) based on Hg(2+)-mediated aggregation of gold nanoparticles (AuNPs). Hg(2+) can induce aggregation of thiol-containing naphthalimide (1) capped AuNPs due to the cross-linking interactions from the resulting "thymine-Hg(2+)-thymine" (T-Hg(2+)-T) analogous structure. When Hg(2+) is firstly treated with biothiols, followed by mixing with 1-capped AuNPs suspension, AuNPs undergo a transformation from an aggregation to a dispersion state depending on the concentration of biothiols. This anti-aggregation or re-dispersion of AuNPs is due to the higher affinity of Hg(2+) for biothiols relative to compound 1. The corresponding color variation in the process of anti-aggregation of AuNPs can be used for the quantitative screening of biothiols through UV-vis spectroscopy or by the naked eye. Under optimized conditions, a good linear relationship in the range of 0.025-2.28 μM is obtained for GSH, 0.035-1.53 μM for Cys, and 0.040-2.20 μM for Hcys. The detection limits of this assay for GSH, Cys, and Hcys are 17, 9, and 18 nM, respectively. This colorimetric assay exhibits a high selectivity and sensitivity with tunable dynamic range. The proposed method has been successfully used in the determination of total biothiol content in human urine samples.  相似文献   

4.
Miao X  Ling L  Cheng D  Shuai X 《The Analyst》2012,137(13):3064-3069
Copper ion (Cu(2+)) plays an important role in many biological reactions, and a suitable level of Cu(2+) is necessary for the regular metabolism of life. Thus developing a sensitive and simple method for determination of Cu(2+) is essential. Here, a novel and sensitive Cu(2+) sensor was developed based on detecting the average hydrodynamic diameter of AuNPs by using dynamic light scattering (DLS). Cu(2+)-specific DNAzyme was double-strand and could not adsorb on the surface of AuNPs, accordingly AuNPs aggregation would occur with the addition of NaCl. However, Cu(2+) could cleave DNAzyme and release single-stranded DNA (ssDNA) fragments, which could adsorb on the surface of AuNPs and prevent them from aggregation. Such differences in DNA adsorption ability on AuNPs before and after the addition of Cu(2+) affected the disperse state of AuNPs directly, and then affected their average hydrodynamic diameter, which could be detected with the DLS technique. Based upon the above mentioned principle, detection of Cu(2+) could be realized over the range from 100 pM to 2.0 nM, with a linear regression equation of D = 306.73 - 89.66C (C: nM, R = 0.9953) and a detection limit of 60 pM (3δ/slope). Moreover, satisfactory results were obtained when the assay was applied in the detection of Cu(2+) in water samples.  相似文献   

5.
A novel gold nanoparticle (AuNP)-based optical sensing system has been developed for the detection of myoglobin (Mb), which is of significant importance for early disease diagnosis. Two thiol molecules containing an iminodiacetic acid moiety (IDA) were synthesized. This detection is based on the Mb-induced aggregation of IDA-functionalized AuNPs resulting from the structures of Mb sandwiched between the functionalized AuNPs via Cu(2+) bridges in the coordination interactions of IDA-Cu(2+)-histidine residues available on the Mb surface, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, dynamic light scattering, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The induction aggregation resulted in a red shift in plasmon resonance band of the AuNPs concomitant with a change in solution color from red to purple. The qualitative and quantitative detections of Mb can be achieved by colorimetric observations and UV-vis spectral measurements, respectively. The selectivity of protein assay with the functionalized AuNPs was further investigated, and it is found that the optical sensing of histidine-rich proteins is closely related to number and distribution of surface histidine residues as well as size of proteins.  相似文献   

6.
A Sahana  A Banerjee  S Lohar  S Guha  S Das  SK Mukhopadhyay  D Das 《The Analyst》2012,137(17):3910-3913
An efficient fluorescent probe (E)-N1-((E)-2-((pyren-7-yl)methyleneamino)ethyl)-N2-((pyren-7-yl)methylene)ethane-1,2-diamine (L) has been synthesized by a facile one-step condensation reaction. L can selectively detect Cd(2+) in presence of other common metal ions in 0.1 M HEPES buffered DMSO-water (4?:?1, v/v) medium. The detection limit of Cd(2+) is 1.8 × 10(-8) M. Cd(2+) can effectively convert the excimer emission of L into its monomer emission which in turn exhibits a time-dependent red-shift.  相似文献   

7.
Liu Y  Dong X  Sun J  Zhong C  Li B  You X  Liu B  Liu Z 《The Analyst》2012,137(8):1837-1845
A novel two-photon excited fluorescent probe for cadmium (named as TPCd) was designed and synthesized utilizing a prodan (6-acetyl-2-methoxynaphthalene) derivative as the two-photon fluorophore and an o-phenylenediamine derivative as the Cd(2+) chelator, which possessed favorable photophysical properties and good water-solubility. The probe was designed with a photoinduced electron transfer (PET) mechanism and thus was weakly fluorescent itself. After binding with Cd(2+) which blocked the PET process, the fluorescence intensity of the probe was enhanced by up to 15-fold under one-photon excitation (OPE) and 27-fold under two-photon excitation (TPE), respectively. The two-photon action cross-section (Φδ) of the TPCd-Cd complex at 740 nm reached 109 GM compared to 3.6 GM for free TPCd, indicating the promising prospect of the probe in two-photon application. TPCd chelated Cd(2+) with 1 : 1 stoichiometry, and the apparent dissociation constant (K(d)) was 6.1 × 10(-5) M for the one-photon mode and 7.2 × 10(-5) M for the two-photon mode. The probe responded to Cd(2+) over a wide linear range from 0.1 to 30 μM with a detection limit of 0.04 μM. High selectivity of the probe towards Cd(2+) was acquired in Tris-HCl/sodium phosphate buffer. The probe was pH-independent in the biologically relevant pH range and non-toxic to living cells at reasonable concentration levels, warranting its in vivo applications. Through two-photon microscopy imaging, the probe was successfully applied to detect Cd(2+) uptake in living HepG2 cells.  相似文献   

8.
In this paper we report on the synthesis and characterization of 1,4-benzene diamine (BDA) functionalized single walled carbon nanotubes linked to cobalt (II) tetracarboxy-phthalocyanine. The characterization of the conjugate was through UV-vis, FTIR and X-ray diffraction (XRD) spectroscopies and by transmission electron microscope (TEM) and electrochemical methods. The conjugate is used for the electrochemical characterization of diuron. The catalytic rate constant for diuron was 4.4×10(3)M(-1)s(-1) and the apparent electron transfer rate constant was 18.5×10(-6)cms(-1). The linear dynamic range was 1.0×10(-5)-2.0×10(-4)M, with a sensitivity of ~0.42Amol(-1)Lcm(-2) and a limit of detection of 0.18μM using the 3δ notation.  相似文献   

9.
Chen X  Zu Y  Xie H  Kemas AM  Gao Z 《The Analyst》2011,136(8):1690-1696
A simple colorimetric assay with high sensitivity, excellent selectivity and a tunable dynamic range is reported for detecting trace amounts of mercuric ion in aqueous solution based on the coordination of Hg(2+) to the gold nanoparticle (AuNP)-associated 3-nitro-1H-1,2,4-triazole (NTA). The NTA can stabilize the AuNPs against tris-induced aggregation through capping the AuNPs. In the presence of Hg(2+), the NTA is released from the AuNP surface via the formation of a NTA-Hg(2+) coordination complex, leading to the aggregation of AuNPs in tris. This detection strategy is unique in terms of high sensitivity and excellent selectivity, a tunable dynamic range, and simplicity of probe preparation. Low detection limits of 7 nM (1.4 ppb) and 50 nM (10 ppb) can be achieved by spectrophotometer and by direct visualization, respectively, under the optimized conditions. No noticeable colour changes are observed towards other metal ions (Ag(+), Zn(2+), Ni(2+), Cr(3+), Mg(2+), Cu(2+), Co(2+), Cd(2+), Pb(2+), Fe(2+)) at concentrations up to 100 μM without the need of any other masking agents. In addition, the dynamic range of the assay can be easily tuned by adjusting the amount of NTA in the NTA-AuNP probes. More importantly, the NTA-AuNP probes can be simply prepared by mixing NTA with as-synthesized citrate-capped AuNPs. This not only avoids complicated surface modifications and tedious separation processes, but also is cost-effective.  相似文献   

10.
Yang F  Duan J  Li M  Wang Z  Guo Z 《Analytical sciences》2012,28(4):333-338
A test strip for detection of Hg(2+) in aqueous solution based on the DNA-functionalized gold nanoparticles (DNA-AuNPs) was developed and evaluated. When Hg(2+) ions were introduced, the biotinylated DNA(2) hybridized with thiolated DNA(1) functionalized on the AuNPs (DNA(1)-AuNPs) to form mismatch complexes through thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination. The formed mismatch complexes and excess DNA(1)-AuNPs could be captured on the test line formed by streptavidin and the control line formed by DNA(3)-BSA, respectively. Two red lines appeared due to the accumulation of AuNPs, enabling visual detection of Hg(2+) with a detection limit of about 6 nM. The assay results can be obtained within 5 min. The results show that the test strip has excellent sensitivity and selectivity for detection of Hg(2+); thus it holds a great potential for rapid, on-site and real time detection of Hg(2+).  相似文献   

11.
Chen Z  Li L  Mu X  Zhao H  Guo L 《Talanta》2011,85(1):730-735
A highly sensitive and specific electrochemical aptasensor for Cu(2+) detection based on gold nanoparticles (AuNPs) is presented. In this work, AuNPs offered a big surface area to immobilize a large number of aptamers and excellent electrochemical signal transduction. Its high sensitivity, low detection limit, and wide detection range are the main advantages over our former copper aptasensor. The peak current increased proportionally to the Cu(2+) concentration over the range from 0.1 nM to 10 μM with a detection limit of 0.1 pM. The presence of other divalent metal ions did not affect the detection of Cu(2+), which indicates a high specificity of Cu(2+) detection could be detected. Rapidity, simplicity, and excellent selectivity make it suitable for practical use in determination of Cu(2+) from lake samples.  相似文献   

12.
Zhang F  Zeng L  Yang C  Xin J  Wang H  Wu A 《The Analyst》2011,136(13):2825-2830
A new approach for the detection of Hg(2+) is reported based on color changes from which gold nanoparticles (Au NPs) are surrounded by a layer of HgS quantum dots to form in situ Au@HgS core-shell nanostructures. The surface plasmon resonance (SPR) absorption of the gold core was changed due to a shell layer of HgS formed on the surface of the Au NPs, which brings the colour change of the aqueous solution. Therefore, Hg(2+) can be recognized by visualizing the colour change of the Au@HgS core-shell nanostructures, and can be detected quantitatively by measurement of the UV-vis spectra. Some effects on the detection of Hg(2+) were investigated in detail. This method was used to detect Hg(2+) with excellent selectivity and high sensitivity. In our method, the lowest detected concentrations for mercury ions were 5.0 × 10(-6) M observed by the naked eye and 0.486 nM as measured by UV-vis spectra. At the range from 8.0 × 10(-5) to 1.0 × 10(-8) M of Hg(2+), this method was shown to have a good linear relationship.  相似文献   

13.
An efficient fluorescent Al(3+) receptor, N-(2-hydroxy-1-naphthalene)-N'-(2-(2-hydroxy-1-naphthalene)amino-ethyl)-ethane-1,2-diamine (L) has been synthesized by the condensation reaction between 2-hydroxy naphthaldehyde and diethylenetriamine. High selectivity and affinity of L towards Al(3+) in ethanol (EtOH) as well as in HEPES buffer at pH 7.4, makes it suitable to detect intracellular Al(3+) with fluorescence microscopy. Metal ions, viz. Li(+), Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+) and Pb(2+) do not interfere. The lowest detection limit for Al(3+) is 3.0 × 10(-7) M and 1.0 × 10(-7) M in EtOH and HEPES buffer respectively.  相似文献   

14.
Wu J  Li L  Zhu D  He P  Fang Y  Cheng G 《Analytica chimica acta》2011,694(1-2):115-119
A colorimetric nanoprobe-mercury-specific DNA-functionalized gold nanoparticles (Au-MSD) was developed for sensing Hg(2+). The new mercury-sensing concept relies on measuring changes in the inhibition of "non-crosslinking" aggregation of Au-MSD-induced by the folding of mercury-specific DNA strand through the thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination. In the absence of Hg(2+), a high concentration of MgCl(2) (50 mM) results in a rapid aggregation of Au-MSD because of the removal of charge repulsion. When Hg(2+) is present, the particles remain stable due to the folding of MSD functionalized on the particle surface. The assay enables the colorimetric detection of Hg(2+) in the concentration range of 0.1-10 μM Hg(2+) ions with a detection limit of 60 nM, and allows for the selective discrimination of Hg(2+) ions from the other competitive metal ions. Toward the goal for practical applications, the sensor was further evaluated by monitoring Hg(2+) in fish tissue samples.  相似文献   

15.
Ni(2+)-induced intramolecular excimer formation of a naphthalene-based novel fluorescent probe, 1-[(naphthalen-3-yl)methylthio]-2-[(naphthalen-6-yl)methylthio]ethane (L), has been investigated for the first time and nicely demonstrated by excitation spectra, a fluorescence lifetime experiment, and (1)H NMR titration. The addition of Ni(2+) to a solution of L (DMSO:water = 1:1, v/v; λ(em) = 345 nm, λ(ex) = 280 nm) quenched its monomer emission, with subsequent enhancement of the excimer intensity (at 430 nm) with an isoemissive point at 381 nm. The fluorescence lifetime of free L (0.3912 ns) is much lower than that of the nickel(2+) complex (1.1329 ns). L could detect Ni(2+) as low as 1 × 10(-6) M with a fairly strong binding constant, 2.0 × 10(4) M(-1). Ni(2+)-contaminated living cells of plant origin could be imaged using a fluorescence microscope.  相似文献   

16.
采用一锅法,通过控制镉硫比合成了表面富镉离子的硫化镉量子点,利用L-半胱氨酸可与量子点表面Cd2+结合,使量子点表面钝化,从而增强其电化学发光信号的性质,实现了对L-半胱氨酸的选择性检测.对合成的量子点进行了表征,优化了检测条件.在优化的条件下,L-半胱氨酸在5.0×10-9~1.0×10-5 mol/L浓度范围内与ECL信号呈良好的线性关系,检出限为1.2×10-9 mol/L(S/N=3).本方法对L-半胱氨酸具有良好的选择性,用于实际样品中L-半胱氨酸的测定,结果令人满意.  相似文献   

17.
Huy GD  Zhang M  Zuo P  Ye BC 《The Analyst》2011,136(16):3289-3294
A colorimetric assay has been developed for the simultaneous selective detection of silver(I) and mercury(II) ions utilizing metal nanoparticles (NPs) as sensing element based on their unique surface plasmon resonance properties. In this method, sulfhydryl group modified cytosine-(C)-rich ssDNA (SH-C-ssDNA) was self-assembled on gold nanoparticles (AuNPs) to produce the AuNPs-C-ssDNA complex, and sulfhydryl group modified thymine-(T)-rich ssDNA (SH-T-ssDNA) was self-assembled on silver nanoparticles (AgNPs) to produce the AgNPs-T-ssDNA complex. Oligonucleotides (SH-C-ssDNA or SH-T-ssDNA) could enhance the AuNPs or AgNPs against salt-induced aggregation. However, the presence of silver(I) ions (Ag(+)) in the complex of ssDNA-AuNPs would reduce the stability of AuNPs due to the formation of Ag(+) mediated C-Ag(+)-C base pairs accompanied with the AuNPs color change from red to purple or even to dark blue. Moreover, the presence of mercury(II) ions (Hg(2+)) would also reduce the stability of AgNPs due to the formation of Hg(2+) mediated T-Hg(2+)-T base pairs accompanied with the AgNPs color change from yellow to brown, then to dark purple. The presence of both Ag(+) and Hg(2+) will reduce the stability of both AuNPs and AgNPs and cause the visible color change. As a result, Ag(+) and Hg(2+) could be detected qualitatively and quantitatively by the naked eye or by UV-vis spectral measurement. The lowest detectable concentration of a 5 nM mixture of Ag(+) and Hg(2+) in the river water was gotten by the UV-vis spectral measurement.  相似文献   

18.
Wu SP  Chen YP  Sung YM 《The Analyst》2011,136(9):1887-1891
A sensitive, selective colorimetric Fe(3+) detection method has been developed by using pyrophosphate functionalized gold nanoparticles (P(2)O(7)(4-)-AuNPs). Gold nanoparticles were prepared by reducing HAuCl(4) with sodium borohydride, in the presence of Na(4)P(2)O(7). IR spectra suggested that pyrophosphates were capped on the surface of the gold nanoparticles. Aggregation of P(2)O(7)(4-)-AuNPs was induced immediately in the presence of Fe(3+) ions, yielding a color change from pink to violet. This Fe(3+)-induced aggregation of P(2)O(7)(4-)-AuNPs was monitored using first the naked eye and then UV-vis spectroscopy with a detection limit of 5.6 μM. The P(2)O(7)(4-)-AuNPs bound by Fe(3+) showed excellent selectivity compared to other metal ions (Ca(2+), Cd(2+), Co(2+), Fe(2+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), and Zn(2+)). The best detection of Fe(3+) was achieved in a pH range from 3 to 9. In addition, the P(2)O(7)(4-)-AuNPs were also used to detect Fe(3+) in lake water samples, with low interference.  相似文献   

19.
Xiang D  Zeng G  Zhai K  Li L  He Z 《The Analyst》2011,136(13):2837-2844
We have developed a new analytical method to detect melamine (MA) in milk powder based on the fluorescence enhancement of Au nanoparticles (AuNPs). AuNPs with the average diameter of ~16 nm can emit stable fluorescence at 370 nm when the excitation wavelength was selected at 252 nm. The AuNPs could assemble with melamine to form larger aggregates (AuNPs-MA) through electrostatic interaction and coordinating interaction in acidic conditions, which led to the significant enhancement of the fluorescence intensity. Under the optimized conditions, the enhancement of the fluorescence intensity exhibited a good linear dependence on melamine concentration in the range from 8.0 × 10(-10) to 8.0 × 10(-8) M, and the detection limit is 6.1 × 10(-10) M (3σ). This proposed method showed high precision and accuracy when applied to the real sample analyses. In conclusion, a simple, rapid, accurate and sensitive method to detect melamine has been suggested.  相似文献   

20.
研究了一种基于双配体(巯基嘌呤(MP)和多肽CALNN)修饰金纳米粒子(AuNPs)的比色方法,用于快速、选择性地检测水溶液中的Cd2+。 其中,MP作为功能配体通过N原子与Cd2+发生配合作用,从而引起AuNPs聚集;CALNN配体有助于提高体系的稳定性和选择性。 当体系中无Cd2+时,溶液呈红色,随着Cd2+浓度的增加,溶液颜色逐渐由红色变为蓝紫色,这种颜色变化可以通过光谱测定还可以用肉眼直接观察。 该方法操作简便,具有较好的选择性和较快的响应速度(<5 min),其检测限达到350 nmol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号