首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
We show that, above a critical stress, typical yield stress fluids (gels and clay suspensions) and soft glassy materials (colloidal glasses) start flowing abruptly and subsequently accelerate, leading to avalanches that are remarkably similar to those of granular materials. Rheometrical tests reveal that this is associated with a bifurcation in rheological behavior: for small stresses, the viscosity increases in time; the material eventually stops flowing. For slightly larger stresses the viscosity decreases continuously in time; the flow accelerates. Thus the viscosity jumps discontinuously to infinity at the critical stress. We propose a simple physical model capable of reproducing these effects.  相似文献   

2.
We study the front dynamics of solutions of the initial value problem of the Burgers equation with initial data being the viscous shock front plus the white noise perturbation. In the sense of distribution, the solutions propagate with the same speed as the unperturbed front, however, the front location is random and satisfies a central limit theorem with the variance proportional to the timet, ast goes to infinity. With probability arbitrarily close to one, the front width isO(1) for large time.  相似文献   

3.
Two convergence results related to the approximation of the Boltzmann equation by discrete velocity models are presented. First we construct a sequence of deterministic discrete velocity models and prove convergence (as the number of discrete velocities tends to infinity) of their solutions to the solution of a spatially homogeneous Boltzmann equation. Second we introduce a sequence of Markov jump processes (interpreted as random discrete velocity models) and prove convergence (as the intensity of jumps tends to infinity) of these processes to the solution of a deterministic discrete velocity model.  相似文献   

4.
We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann–Robertson–Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with \(w<-1\). From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data.  相似文献   

5.
Yi Ling  Meng-He Wu 《中国物理C(英文版)》2022,46(2):025102-025102-10
We develop the regular black hole solutions by incorporating the 1-loop quantum correction to the Newton potential and a time delay between an observer at the regular center and one at infinity. We define the maximal time delay between the center and the infinity by scanning the mass of black holes such that the sub-Planckian feature of the Kretschmann scalar curvature is preserved during the process of evaporation. We also compare the distinct behavior of the Kretschmann curvature for black holes with asymptotically Minkowski cores and those with asymptotically de-Sitter cores, including Bardeen and Hayward black holes. We expect that such regular black holes may provide more information about the construction of effective metrics for Planck stars.  相似文献   

6.
Abstract

We show that for a class of boundary value problems, the space of initial functions can be stratified dependently on the limit behavior (as the time variable tends to infinity) of solutions. Using known results on universal phenomena appearing in bifurcations of one parameter families of one-dimensional maps, we establish that, for certain types of boundary value dependence, a similar quantitative and qualitative universality is also observed in the stratification and bifurcations of solutions.  相似文献   

7.
Li Z  Li L  Tian H  Zhou G 《Physical review letters》2000,84(18):4096-4099
We present new types of solitary wave solutions for the higher order nonlinear Schrodinger (HNLS) equation describing propagation of femtosecond light pulses in an optical fiber under certain parametric conditions. Unlike the reported solitary wave solutions of the HNLS equation, the novel ones can describe bright and dark solitary wave properties in the same expressions and their amplitude may approach nonzero when the time variable approaches infinity. In addition, such solutions cannot exist in the nonlinear Schrodinger equation. Furthermore, we investigate the stability of these solitary waves under some initial pertubations by employing the numerical simulation methods.  相似文献   

8.
We study random walks on large random graphs that are biased towards a randomly chosen but fixed target node. We show that a critical bias strength bc exists such that most walks find the target within a finite time when b > bc. For b < bc, a finite fraction of walks drift off to infinity before hitting the target. The phase transition at b=bc is a critical point in the sense that quantities such as the return probability P(t) show power laws, but finite-size behavior is complex and does not obey the usual finite-size scaling ansatz. By extending rigorous results for biased walks on Galton-Watson trees, we give the exact analytical value for bc and verify it by large scale simulations.  相似文献   

9.
We study the current relaxation of a wave packet in a nonlinear random sample coupled to the continuum and show that the survival probability decays as P(t) approximately 1/t(alpha). For intermediate times tt(*) and chi>chi(cr) we find a universal decay with alpha=2/3 which is a signature of the nonlinearity-induced delocalization. Experimental evidence should be observable in coupled nonlinear optical waveguides.  相似文献   

10.
We show that the nonlinear equation that describes nonparaxial Kerr propagation, together with the already reported bright-soliton solutions, admits of (1 + 1)D dark-soliton solutions. Unlike their paraxial counterparts, dark solitons can be excited only if their asymptotic normalized intensity u2infinity is below 3/7; their width becomes constant when u2infinity approaches this value.  相似文献   

11.
In this paper we define the radiation field for the wave equation on the Schwarzschild black hole spacetime. In this context it has two components: the rescaled restriction of the time derivative of a solution to null infinity and to the event horizon. In the process, we establish some regularity properties of solutions of the wave equation on the spacetime. In particular, we prove that the regularity of the solution across the event horizon and across null infinity is determined by the regularity and decay rate of the initial data at the event horizon and at infinity. We also show that the radiation field is unitary with respect to the conserved energy and prove support theorems for each piece of the radiation field.  相似文献   

12.
We consider a random network evolving in continuous time in which new nodes are born and old may die, and where undirected edges between nodes are created randomly and may also disappear. The node population is Markovian and so is the creation and deletion of edges, given the node population. Each node is equipped with a random social index and the intensity at which a node creates new edges is proportional to the social index, and the neighbour is either chosen uniformly or proportional to its social index in a modification of the model. We derive properties of the network as time and the node population tends to infinity. In particular, the degree-distribution is shown to be a mixed Poisson distribution which may exhibit a heavy tail (e.g. power-law) if the social index distribution has a heavy tail. The limiting results are verified by means of simulations, and the model is fitted to a network of sexual contacts.  相似文献   

13.
We are concerned with spherically symmetric solutions of the Euler equations for multidimensional compressible fluids, which are motivated by many important physical situations. Various evidences indicate that spherically symmetric solutions of the compressible Euler equations may blow up near the origin at a certain time under some circumstance. The central feature is the strengthening of waves as they move radially inward. A longstanding open, fundamental problem is whether concentration could be formed at the origin. In this paper, we develop a method of vanishing viscosity and related estimate techniques for viscosity approximate solutions, and establish the convergence of the approximate solutions to a global finite-energy entropy solution of the isentropic Euler equations with spherical symmetry and large initial data. This indicates that concentration is not formed in the vanishing viscosity limit, even though the density may blow up at a certain time. To achieve this, we first construct global smooth solutions of appropriate initial-boundary value problems for the Euler equations with designed viscosity terms, approximate pressure function, and boundary conditions, and then we establish the strong convergence of the viscosity approximate solutions to a finite-energy entropy solution of the Euler equations.  相似文献   

14.
This paper deals with solutions to the Vlasov–Poisson system with an infinite mass. The solution to the Poisson equation cannot be defined directly because the macroscopic density is constant at infinity. To solve this problem, we decompose the solution to the kinetic equation into a homogeneous function and a perturbation. We are then able to prove an existence result in short time for weak solutions to the equation for the perturbation, even though there are no a priori estimates by lack of positivity.  相似文献   

15.
Crystallization of isotactic polystyrene (it‐PS) from dilute solution at high supercooling has been investigated by dynamic light scattering (DLS). We successfully obtained simultaneously, in situ in solutions, the time developments of both random coils of it‐PS molecules and the growing crystals. The size of coils remains constant during growth, while the crystals pass through two stages, that is, an induction period at the early stage with very slow growth rates and a subsequent linear growth stage. It is confirmed that the temperature dependence of the linear growth rates, determined by DLS, agree well with that determined by electron microscopy. The temperature dependences of the growth rate and the inverse of induction time are dependent on the viscosity of solvent, which indicates that all dynamics are dominated by the segmental motion of polymer chains in solution at high supercoolings (low temperatures). Two possibilities are proposed for the induction period.  相似文献   

16.
We consider a quadratic Liénard equation with an unbounded homoclinic loop, which is a solution tending in forward and backward time to a non-hyperbolic equilibrium point located at infinity. Under small time-periodic perturbation, this equilibrium becomes a normally hyperbolic line of singularities at infinity. We show that the perturbed system may present homoclinic bifurcations, leading to the existence of transverse intersections between the stable and unstable manifolds of such a normally hyperbolic line of singularities. The global study concerning the infinity is performed using the Poincaré compactification in polar coordinates, from which we obtain a system defined on a set equivalent to a solid torus in R3, whose boundary plays the role of the infinity. The transversality of the manifolds is proved using the Melnikov method and implies, via the Birkhoff-Smale Theorem, a complex dynamical behaviour of the perturbed system solutions in the finite part of the phase space. Numerical simulations are performed in order to illustrate this behaviour, which could be called “the chaos arising from infinity”, since it depends on the global structure of the Liénard equation, including the points at infinity. Although applied to a particular case, the analysis presented provides a geometrical approach to study periodic perturbations of homoclinic (or heteroclinic) loops to infinity of any planar polynomial vector field.  相似文献   

17.
The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.  相似文献   

18.
Bird's direct simulation Monte Carlo method for the Boltzmann equation is considered. The limit (as the number of particles tends to infinity) of the random empirical measures associated with the Bird algorithm is shown to be a deterministic measure-valued function satisfying an equation close (in a certain sense) to the Boltzmann equation. A Markov jump process is introduced, which is related to Bird's collision simulation procedure via a random time transformation. Convergence is established for the Markov process and the random time transformation. These results, together with some general properties concerning the convergence of random measures, make it possible to characterize the limiting behavior of the Bird algorithm.  相似文献   

19.
Flows dominated by high viscosity are often described using the steady Stokes equation. We will discuss three situations where the limits that are needed in order to arrive at this representation are questionable, and will show that unexpected flow behaviour arises: (i) under the influence of a time-dependent force, flows need not be reversible and chaotic advection can arise; (ii) the flow field around an oscillating sphere becomes that of the steady flow only for slow motion and sufficiently close to the sphere; (iii) the time-dependence in the fluid motion modifies the response of a sphere to an oscillatory force; (iv) when these forces are taken into account, the limits of particle size to zero and observation time to infinity do not commute and small particles do not maintain a uniform distribution.  相似文献   

20.
We consider a space-continuous and time-discrete polymer model for positive temperature and the associated zero temperature model of last passage percolation type. In our previous work, we constructed and studied infinite-volume polymer measures and one-sided infinite minimizers for the associated variational principle, and used these objects for the study of global stationary solutions of the Burgers equation with positive or zero viscosity and random kick forcing, on the entire real line. In this paper, we prove that in the zero temperature limit, the infinite-volume polymer measures concentrate on the one-sided minimizers and that the associated global solutions of the viscous Burgers equation with random kick forcing converge to the global solutions of the inviscid equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号