首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sum-frequency vibrational spectroscopy was used to obtain the first surface vibrational spectra of shear-deposited highly oriented poly(tetrafluoroethylene) (PTFE, Teflon) thin films. The surface PTFE chains appeared to lie along the shearing direction. Vibrational modes observed at 1142 and 1204 cm-1 were found to have the E1 symmetry, in support of some earlier analysis in the long-lasting controversy over the assignment of these modes.  相似文献   

2.
In this paper, we report on the local thermal activation of thin polymer films for area-selective surface chemical modification on micrometer and nanometer length scales. The thermally induced activation of tert-butyl ester moieties in polystyrene- block-poly(tert-butyl acrylate) (PS- b-PtBA) block copolymer films leads to the formation of pending carboxylic acid groups, which are among the versatile functionalities for subsequent bioconjugation. From Fourier transform infrared (FTIR) spectroscopic analyses, the apparent activation energy (Ea) for the tert-butyl ester deprotection in thin films was calculated to be 93 +/- 12 kJ/mol, which is in good agreement with values reported for the bulk. The availability of the deprotected carboxylic acid groups in subsequent wet chemical grafting reactions on neat thermolyzed films was confirmed by covalently immobilizing fluoresceinamine and amino end-functionalized poly(ethylene glycol) (PEG-NH2) using established 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) chemistry. Local thermal deprotection on micrometer and sub-micrometer length scales was achieved by scanning thermal microscopy using an atomic force microscope with heatable probe tips. Passivating PEG and fluoresceinamine layers were selectively covalently coupled to locally deprotected areas as small as 370 nm x 580 nm.  相似文献   

3.
The elastic properties of poly(vinyl alcohol) (PVA) were investigated on the nanoscale using the new technique of single molecule force spectroscopy by atomic force microscopy (AFM). It was found that the elastic properties of PVA molecules scale linearly with their contour lengths. This finding corroborates that the deformation of individual PVA chains is measured. The force spectra of PVA show a kink at around 200 pN and cannot be fitted by an extended Langevin function. The deviation of the elastic behavior of PVA from a freely jointed chain model may indicate the presence of a suprastructure of PVA in NaCl solution.  相似文献   

4.
We report the combination of latex nanosphere lithography with electropolymerization of N-substituted pyrrole monomer bearing a nitrilotriacetic acid (NTA) moiety for the template-assisted nanostructuration of poly(pyrrole-NTA) films and their application for biomolecule immobilization. The electrodes were modified by casting latex beads (100 or 900 nm in diameter) on their surface followed by electropolymerization of the pyrrole-NTA monomer and the subsequent chelation of Cu2+ ions. The dissolution of the nanobeads leads then to a nanostructured polymer film with increased surface. Thanks to the versatile affinity interactions between the (NTA)Cu2+ complex and histidine- or biotin-tagged proteins, both tyrosinase and glucose oxidase were immobilized on the modified electrode. Nanostructuration of the polypyrrole via nanosphere lithography (NSL) using 900- and 100-nm latex beads allows an increase in surface concentration of enzymes anchored on the functionalized polypyrrole electrode. The nanostructured enzyme electrodes were characterized by fluorescence microscopy, 3D laser scanning confocal microscopy, and scanning electron microscopy. Electrochemical studies demonstrate the increase in the amount of immobilized biomolecules and associated biosensor performances when achieving NSL compared to conventional polymer formation without bead template. In addition, the decrease in nanobead diameter from 900 to 100 nm provides an enhancement in biosensor performance. Between biosensors based on films polymerized without nanobeads and with 100-nm nanobeads, maximum current density values increase from 4 to 56 μA cm?2 and from 7 to 45 μA cm?2 for biosensors based on tyrosinase and glucose oxidase, respectively.  相似文献   

5.
Atomic Force Microscopy (AFM) in the tapping mode was used for the observation of bare poly (styrene/acrolein) P(SA) microspheres and microspheres with attached HSA. Prior to the AFM observations the P(SA) microspheres were immobilized covalently on the surface of quartz slides modified with -aminopropyltriethoxysilane. Atomic Force Microscopy pictures were registered for the dry samples. The partial coalescence of the P(SA) microspheres connected to the quartz surface with amino groups has been observed. The AFM pictures of the single P(SA) microspheres revealed that the surface of these particles is smooth and that any irregularities, if present, do not exceed 1 nm. The surface of microspheres with attached HSA has very clearly different morphology with regular pattern of HSA macromolecules. Cracks on the surfaces of some microspheres with HSA revealed that protein macromolecules are attached to these particles in several layers. In the case of some other microspheres the defects in protein attachment allowed the observation of the border between the bare surface of the P(SA) microspheres and the surface covered with protein macromolecules. Comparison of the thickness of the HSA layers on the P(SA) microspheres with the dimensions of HSA macromolecules, determined earlier from the x-ray studies, suggests that the first layer, 3.0±0.2 nm thick, is formed of the HSA macromolecules arranged flatly on the surface whereas protein macromolecules in the subsequent layers, each 8.6±1 nm thick, are adsorbed protruding from the surface.  相似文献   

6.
This paper describes experimental work where the mechanical behaviour of relatively dry, solid poly(acrylic acid) films at room temperature was correlated with changes in hydrogen-bonding in the polymer. Hydrogen-bonding between the carbonyl and the hydroxyl groups was followed by FT-IR spectroscopy while the films were stretched uniaxially. Limited mobility of the polymer below its Tg led to small but detectable changes in bonding. A characteristic strain-hardening behaviour was observed if no bound water was detected in the samples.  相似文献   

7.
Journal of Solid State Electrochemistry - Polymer films were cast from aqueous solutions of chitosan (CS) and poly(vinyl alcohol) (PVA) in employing tetraethoxysilane (TEOS) as a crosslinking...  相似文献   

8.
The orientation of poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) segments in PHB/PLA blend films cast from chloroform solutions with compositions PHB < PLA was studied during uniaxial elongation up to 250% strain at 50 °C by in-situ rheo-optical FT-IR spectroscopy. From the orientation functions of the ν(CO) bands of the blend components, it was derived that the PLA chains orient in the direction of elongation while the PHB chains orient perpendicular to the drawing direction. PHB homopolymer and PHB/PLA blend films with PHB > PLA compositions could only be oriented by cold drawing in ice water after quenching from the melt. The IR-dichroic effects of films drawn under these conditions indicate for both blend components a chain alignment parallel to the drawing direction.  相似文献   

9.
Here we report the preparation and characterization of nanostructured thermo-responsive poly(acrylamide) (PAM)-based hydrogels. The addition of slightly crosslinked poly(N-isopropylacrylamide) (PNIPA) nanogels to AM reactive aqueous solution produces nanostructured hydrogels that exhibit a volume phase transition temperature (TVPT). Their swelling kinetics, TVPT's and mechanical properties at the equilibrium-swollen state (Heq) are investigated as a function of the concentration of PNIPA nanogels in the nanostructured hydrogels. Nanostructured hydrogels with PNIPA nanogels/AM mass ratios of 20/80 and above exhibit higher Heq and longer time to reach the equilibrium swelling than those of the conventional PAM hydrogels. However, the PNIPA nanogels possess thermo-responsive character missing in conventional PAM hydrogels. The TVPT of nanostructured hydrogels depends on PNIPA nanogel content but their elastic and Young moduli are larger than those of conventional hydrogels at similar swelling ratios. Swelling kinetics, TVPT, and mechanical properties are explained in terms of the controlled in-homogeneities introduced by the PNIPA nanogels during the polymerization.  相似文献   

10.
In this paper, we report a systematic study of the dielectric relaxation spectroscopy of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) polyester which has potential applications as a “green” dielectric material in electronic devices. The dielectric spectra was measured over a wide frequency range (100  107 Hz) from ?100 to 60 °C. A glass and a sub-glass transition relaxations were observed in the dielectric spectra of PHBHHx. In addition, a nearly constant loss behavior was found by analyzing the dielectric and conductivity spectra.  相似文献   

11.
Using Brillouin spectroscopy (BS), the tensor of the elastic constants of oriented poly(ethylene terephthalate) was determined for a variety of morphologies obtained by different uniaxial drawing procedures. The extreme values of the moduli along the drawing direction at frequencies of a few gigahertz were C33 = 40 GPa and C44 = 1.8 GPa. As a result of the invariants of the single‐phase aggregate model, the oriented state is dominated by the Reuss average even at extreme draw ratios and subsequent to a deformation‐induced crystallization. This is documented in both the BS orientation parameter and the BS mode numbers in comparison with birefringence. Additional spectral lines observed at draw ratios larger than 6 are discussed in relation to the formation of nanostructured phases. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1201–1213, 2002  相似文献   

12.
A method has been developed for attaching oil (tetradecane) droplets to the end of an atomic force microscopy (AFM) cantilever and for immobilizing droplets on a glass substrate. This approach has permitted the monitoring of droplet-droplet interactions in aqueous solution as a function of interdroplet separation. Coating the droplet surfaces with added proteins or surfactants has allowed the production of model emulsions. We demonstrate that AFM measurements of droplet deformability are sensitive to interfacial rheology by modifying the interfacial film on a pair of droplets in situ. For droplets coated with the anionic surfactant sodium dodecyl sulfate, screening of the double layer has been found to facilitate coalescence. Direct imaging of the droplets has revealed the presence of regularly spaced concentric rings on the droplet surfaces. Careful experimental studies suggest that these structures may be imaging artifacts and are not perturbations of the droplet surface determined by the composition of the interface.  相似文献   

13.
Oyster shell protein (OSP), an aspartate-enriched regulator of crystallization, was readily observed in its natural condition by atomic force microscopy (AFM) of fragments of oyster shell. The fragments of shell consisted of layers of calcite mineral, termed folia, to which arrays of protein molecules are attached. Modification and removal of the OSP following treatment with several proteolytic enzymes such as subtilisin, carboxypeptidase B, and endoproteinase Glu-C were also observed by AFM. Similarly, poly (aspartate), a polypeptide analog of the OSP, was visualized by AFM on both calcite and mica. Images of poly(aspartate) before and after treatment with lipase demonstrated the potential utility of AFM in degradation studies. The mechanism of hydrolysis is not clear in that lipase normally is considered to be an esterase and not a peptidase.  相似文献   

14.
Friction force microscopy measurements have been carried out on free-standing films of poly(ethylene terephthalate) in a variety of different media. In ethanol, the adhesion force was small, and the friction-load relationship was linear. In perfluorodecalin, nonlinearity was observed in the friction-load relationship, and the data have been found to fit the Johnson-Kendall-Roberts model of contact mechanics. The behavior in hexadecane was also characterized by a single-asperity contact model, but in this case, the data were found to fit the Derjaguin-Müller-Toporov model. It is suggested that these differences are due to the different strengths of tip-sample adhesion, which arise from the differences in the dielectric constants of the media: in ethanol, which has a high dielectric constant, the friction force varies linearly with the load, whereas in media of low dielectric constant, adhesion-limited behavior is observed.  相似文献   

15.
The use of anionic water-soluble conjugated polymers (CPs) for sensing the presence of avidin by use of a biotin-modified fluorescence quencher was studied. The molecules involved in the study included poly[2-methoxy-5-(3'-propyloxysulfonate)-1,4-phenylenevinylene] with either lithium (Li+-MPS-PPV) or sodium (Na(+)-MPS-PPV) countercations, the well-defined oligomer pentasodium 1,4-bis(4'(2",4"-bis(butoxysulfonate)-styryl)-styryl)2-butoxysulfonate-5-methoxybenzene (5R5-), the quenchers N-methyl-4,4'-pyridylpyridinium iodide (mMV+) and [N-(biotinoyl)-N'-(acetyl 4,4'-pyridylpyridinium iodide)] ethylenediamine (BPP+), which contains a molecular recognition fragment (biotin) attached to a unit that accepts an electron from a CP excited state, and the proteins avidin, tau, BSA, and pepsin A. Fluorescence quenching experiments were examined in a variety of conditions. Experiments carried out in water and in ammonium carbonate buffer (which ensures avidin/biotin complexation) reveal that nonspecific interactions between the CP and the proteins cause substantial perturbations on the CP fluorescence. The overall findings are not consistent with a simple mechanism whereby avidin complexation of BPP+ leads to encapsulation of the quencher molecule and recovery of Li+-MPS-PPV fluorescence. Instead, we propose that binding of BPP+ to avidin results in the quenching unit attaching to a positively charged macromolecule. Electrostatic attraction to the negatively charged conjugated polymer results in closer proximity to the quencher. Therefore, more enhanced fluorescence quenching is observed.  相似文献   

16.
Intermolecular interactions in crystalline perylene films on Au(111) have been investigated by Fourier transform infrared spectroscopy. Dimer modes of vibrations are observed in the crystalline film, in contrast to the monomer modes found for isolated perylene molecules. These dimers are formed via hydrogen bonding in the sandwich herringbone structure of the crystalline α-phase. Davydov splitting of both the monomer and the dimer modes is observed due to resonance dynamic intermolecular interaction. The splitting of monomer modes into three distinct vibrations and the occurrence of the dimer modes confirm that the film crystallizes in the α phase, which is in line with the x-ray diffraction results. The frequency shift and band broadening at elevated temperature have been attributed to the cubic and quartic anharmonic interactions.  相似文献   

17.
The thermoresponsive behavior and mechanical properties of nanostructured hydrogels, which consist of poly(acrylamide) nanoparticles embedded in a cross-linked poly(N-isopropylacrylamide) hydrogel matrix, are reported here. Nanostructured hydrogels exhibit a tuned volume phase transition temperature (T VPT), which varies with nanoparticle content in the range from 32 up to 39–40 °C. Moreover, larger equilibrium water uptake, faster swelling and de-swelling rates, and larger equilibrium swelling at 25 °C were obtained with nanostructured hydrogels compared with those of conventional ones. Elastic and Young’s moduli were larger than those of conventional hydrogels at similar swelling ratios. The tuned T VPT and the de-swelling rate were predicted with a modified Flory–Rehner equation coupled with a mixing rule that considers the contribution of both polymers. These behaviors are explained by a combination of hydrophilic/hydrophobic interactions and by the controlled inhomogeneities (nanoparticles) introduced by the method of synthesis.  相似文献   

18.
The adsorption behavior of poly(amidoamine) dendrimers to mica surfaces was investigated as a function of ionic strength and pH. The conformation and lateral distribution of the adsorbed dendrimers of generations G8 and G10 were obtained ex situ by tapping mode atomic force microscopy (AFM). The deposition kinetics of the dendrimers was found to follow a diffusion-limited process. Fractional surface coverage and pair correlation functions of the adsorbed dendrimers were obtained from the AFM images. The data are interpreted in terms of the random sequential adsorption (RSA) model, where electrostatic repulsion due to overlapping double layers is considered. Although the general trends typical for an RSA-determined process are well-reproduced, quantitative agreement is lacking at low ionic strengths.  相似文献   

19.
The specifics of photochromic transformations of spirocyclic molecules at the nanostructured metal surface were studied by hyper-Raman spectroscopy (HRS) and spectrophotometry. Unique nanostructured systems were prepared, and their surface morphology and optical properties were examined. Enhancement of the photochromic transformations near the nanostructured metal surface was revealed. HRS spectra for various classes of spirocyclic compounds adsorbed on nanostructured systems of different types (granular silver films, AgCl-Ag films) were measured. The bands due to in-plane vibrations have the highest intensity, thereby indicating preferred planar geometry of adsorption of the test molecules.  相似文献   

20.
A series of new fluorine-containing poly(aryl ether ketone)s (8F-PEKEK(Ar); Ar: 2-2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6FBA), 2,2-bis(4-hydroxyphenyl)propane (BA), 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane (3,4-BA) or 9,9-bis(4-hydroxyphenyl)fluorine (HF)) are synthesized and applied to the matrix of optical oxygen sensing using phosphorescence quenching of metalloporphyrins, platinum and palladium octaethylporphyrin, (PtOEP and PdOEP) by oxygen. The phosphorescence intensity of PtOEP and PdOEP in 8F-PEKEK(Ar) films decreased with increase of oxygen concentration. The ratio I0/I100 is used as a sensitivity of the sensing film, where I0 and I100 represent the detected phosphorescence intensities from a film exposed to 100% argon and 100% oxygen, respectively. For PtOEP in 8F-PEKEK(Ar) film, I0/I100 values are more than 20.0 and large Stern-Volmer constants more than 0.19%−1 are obtained compared with PtOEP in polystyrene film. For PdOEP in 8F-PEKEK(Ar) film, on the other hand, the large I0/I100 values more than 143 are obtained. However, the Stern-Volmer plots of PdOEP in 8F-PEKEK(Ar) films exhibit considerable linearity at lower oxygen concentration range between 0% and 20%. These results indicate that PtOEP and PdOEP films are useful optical oxygen sensor at the oxygen concentration range between 0% and 100% and between 0% and 20%, respectively. The response times of PtOEP and PdOEP dispersed in 8F-PEKEK(Ar) films are 5.6 and 3.0 s on going from argon to oxygen and 110.1 and 160.0 s from oxygen to argon, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号