首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the 1H NMR spectroscopic method it has been shown that 7-alkoxyalkyl-3-oxa-7-azabicyclo[3.3.1]nonan-9-ones and 7-alkoxyalkyl-3-oxa-7-azabicyclo[3.3.1]nonanes exist in deuterochloroform solution in a double chair conformation. 7-(3-Butoxypropyl)-3-oxa-7-azabicyclo[3.3.1]nonan-9-ol is a 1:1 mixture of the two stereoisomeric alcohols. One of them exists in a double chair conformation having an equatorial hydroxyl group with relation to the piperidine ring and the other in a chair-boat conformation having an axial hydroxyl group which involves an intramolecular hydrogen bond with the unshared electron pair of the nitrogen atom.  相似文献   

2.
The spatial structure of 3,7-dialkoxyalkyl-3,7-diazabicyclo[3.3.1]nonan-9-ols has been investigated with the aid of 1H and 13C NMR spectroscopy. It was shown that the secondary alcohols studied exist in solution predominantly in a chair-boat conformation which proved to be energetically more favorable than a chair-chair conformation due to the formation of an intramolecular hydrogen bond (IMHB) between the unshared pair of electrons on the nitrogen atom and the hydrogen atom of the hydroxyl group.  相似文献   

3.
The anionic polymerization of acrolein (AL) with N, N-dimethylamino-propylacrylamide (DMAPA) in the presence of water was investigated in tetrahydrofuran, benzene, and ethanol at 0°C in a nitrogen atmosphere. The resulting polymers were found to be essentially vinyl polymers with one DMAPA attached and an aldehyde side chain. From observations of the polymerization process by 1H NMR, we find that polymerization was initiated by the hydroxyl anion formed in the thermodynamic equilibrium between the amine of DMAPA and water. The hydrogen transfer reaction of DMAPA was caused by the propagating poly-AL anion. On the other hand, the monomer reactivity ratios and the Q2-e2values of DMAPA were determined by the free-radical copolymerization of styrene (St, M1) with DMAPA and AIBN as initiator.  相似文献   

4.
The15N NMR chemical shifts and15N-1H SSCCs are presented for substituted N-methylpyrazoles with substituents such as CH3, NO2, Br, Cl, NH2, O=CNH2, O=CPh, and COOH at the carbon atoms. The15N chemical shifts of the cyclic atoms of nitrogen and the nitro groups are discussed as well as the geminal and vicinal SSCCs of the ring nitrogen atoms with the hydrogen atoms of the CH and CH3 fragments.N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117334 Moscow. D. I. Mendeleev Chemico-Technological Institute, Moscow, Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 11, pp. 2554–2561, November, 1992.  相似文献   

5.
Na[YbIII(Cydta)(H2O)2] · 5H2O (1) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and [YbIII(Hegta)] · 2H2O (2) (H4egta = ethyleneglycol-bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) were prepared and their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. Complex 1 crystallized in the triclinic crystal system with space group P 1; the YbIII is eight-coordinate by a hexadentate Cydta and two water molecules. Complex 2 is a protonated egta complex, crystallized in the monoclinic crystal system with space group P 2 1 /c; YbIII is coordinated only by the octadentate Hegta ligand. Both these complexes adopt a pseudo-square antiprismatic conformation.  相似文献   

6.
Mercury cyanide complexes of alkyldiamines (16), [Hg(L)(CN)2] (where L?=?en (1,2-diaminoethane), pn (1,3-diaminopropane), N-Me-en, N, N′-Me2-en, N, N′-Et2-en, and N, N′-ipr2-en), have been synthesized and characterized by elemental analysis, IR, 13C, and 15N solution NMR in DMSO-d6, as well as 13C, 15N, and 199Hg solid-state NMR spectroscopy. Complexes 1 and 2 have been studied computationally, built and optimized by GAUSSIAN03 using DFT at B3LYP level with LanL2DZ basis set. Binding modes of en and bn (where bn?=?1,4-diaminobutane) toward Hg(CN)2 are completely different. Complexes with en and pn show chelating binding to Hg(II), while bn behaves as a bridging ligand to form a polymeric structure, [Hg(CN)2-bn] [B.A. Al-Maythalony, M. Fettouhi, M.I.M. Wazeer, A.A. Isab. Inorg. Chem. Commun., 12, 540 (2009).]. The solution 13C NMR of the complexes demonstrates a slight shift of the ?C≡N (0.9 to 2?ppm) and ?C–NH2 (0.25 to 6?ppm) carbon resonances, while the other resonances are relatively unaffected. 15N labeling studies have shown involvement of alkyldiamine ligands in coordination to the metal. The principal components of the 13C, 15N, and 199Hg shielding tensors have been determined from solid-state NMR data. Antimicrobial activity studies show that the complexes exhibit higher antibacterial activities toward various microorganisms than Hg(CN)2.  相似文献   

7.
Two new complexes, [Cu(L1){N(CN)2}]·ClO4 (1) (L1 is 1,8-dimethyl-1,3,6,8,10,13-hexa-azacyclotetradecane) and [Co(L2)(N3)2]·ClO4 (2) (L2 is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane) have been synthesized and characterized. The compounds crystallize in the monoclinic system P21 space group for 1 and P21/n for 2. Single crystal X-ray analysis reveals that the compound 1 assumes a one-dimensional structure via hydrogen-bonding interactions, in which each Cu(II) ion is coordinated by four nitrogen atoms from ligand L1 and one nitrogen atom from [N(CN)2] anion. For compound 2, each Co(III) ion is coordinated by four nitrogen atoms of ligand L2 and two nitrogen atoms from N3 anion.  相似文献   

8.
Two lanthanide complexes, (mnH)2[EuIII(egta)]2·6H2O (1) (H4egta = ethyleneglycol-bis-(2aminoethylether)-N,N,N,N′-tetraacetic acid) and (mnH)4[EuIII2(dtpa)2]·6H2O (2) (H5dtpa = diethylenetriamine-N,N,N,N″,N″-pentaacetic acid), have been synthesized and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction. X-ray diffraction reveals that 1 is multinuclear nine-coordinate and crystallizes in the monoclinic crystal system with space group C2/c. The obtained cell dimensions are a = 38.513(3)?Å, b = 13.5877(8)?Å, c = 8.7051(5)?Å, β = 99.6780(10)°, and 4490.6(5)?Å3. Each methylamine (mnH+) cation in 1, through hydrogen bonds, connects three adjacent [EuIII(egta)]? anions. The [EuIII(egta)]? anions connect one another forming a 1-D multinuclear zigzag chain structure along the c-axis. Complex 2 is nine-coordinate binuclear structure with tricapped trigonal prismatic conformation and crystallizing in the monoclinic crystal system, but with space group P21/n. The obtained cell dimensions are a = 9.9132(8)?Å, b = 24.1027(18)?Å, c = 10.7120(10)?Å, β = 109.1220(10)°, and 2418.2(3)?Å3. For 2, there are two kinds of methylamine cations (mnH+) connecting [EuIII2(dtpa)2]4? complex anions and lattice waters through hydrogen bonds, leading to formation of a 2-D ladder-like layer structure.  相似文献   

9.

The heterocyclization of an asymmetrical N,N′-disubstituted thiourea (1a–d) in ring closure reactions with Br2/AcOH, ethyl chloroacetate, diethyl oxalate, diethyl malonate, and hydrazine hydrate led to the direct formation of sulfur-bearing various heterocyclic systems (2–8) in which the thiaenolization is toward the aryl group. The synthetic work and reactivity investigations have been well supported by standard modern spectroscopic techniques (IR, 1 H NMR, 13 C NMR, mass spectrum, and microanalysis).  相似文献   

10.
New cadmium(II) complexes with phosphine telluride ligands of the type CdX2(R3PTe)n [X?=?ClO4?, n?=?4: R?=?n-Bu (1), Me2?N (2), C5H10?N (3), C4H8?N (4) or OC4H8?N (5); X?=?Cl, n?=?2: R?=?n-Bu (6), Me2?N (7), C5H10?N (8), C4H8?N (9) or OC4H8?N (10)] have been synthesized and characterized by elemental analyses, IR and multinuclear (31P, 125Te, and 113Cd) NMR spectroscopy. In particular, the solution structures of these complexes were confirmed by 113Cd NMR at low temperature, which displays a quintuplet for each of the perchlorate complexes and a triplet for each of the chloride complexes due to coupling with four and two equivalent phosphorus atoms, respectively, indicating a four-coordinate tetrahedral geometry for the metal center. These multiplet features were further accompanied by one bond Te–Cd couplings, clearly showing that the ligand is coordinated to the metal through tellurium. The results are discussed and compared with those obtained for closely related phosphine chalcogenide analogs.  相似文献   

11.
The solvatochromic compound [Cu(tfmh)Me4en]ClO4 (tfmh? denotes the anion of 1,1,1-trifluoro-6-methyl-2,4-heptanedione) was prepared and its structure has been determined from three-dimensional X-ray diffraction data. The structure consists of discrete [Cu(tfmh)Me4en]+ monomeric units and perchlorate ions. The copper(II) ion is surrounded by the two nitrogen atoms of the diamine molecule and the two oxygen atoms of the β-dionato anion. The N,N,N′,N′-tetramethyl-1,2-diaminoethane, Me4en, coordinates as bidentate ligand through the nitrogen atoms and adopts the gauche conformation and λ configuration. The CuN2O2 chromophore is virtually planar. The compound crystallizes in the monoclinic system (space group P21/c) with a = 11.9520(2), b = 14.6600(2), c = 17.2240(4) Å, β = 135.72(2)°, Z = 4 and V = 2107.01(7) Å3.  相似文献   

12.
Abstract

We examined complexing sites of the Pb2+ complex of the macrocyclic lactam 1 using 15N NMR and other spectroscopies and we have found that the amide groups undergo conformational changes to allow the complexation process to proceed via the pyridine nitrogen atom and carbonyl and ethereal oxygen atoms. X-Ray analysis of compound 1 was carried out successfully. Space group I41/a, a=28.332(4)Å, b=28.332(4)Å, c=10.7379(4)Å, Z=16, V=8619.3(18)Å3, Dc=1.197gcm?3, R1=0.0479 (based on 2510 reflections I>2[sgrave](I). It shows presence of intramolecular hydrogen bonds, which are broken during the complexation. Molecules form supramolecular tetragonal assemblies in the crystal, which form channels the walls of which are 7.42 Å apart.  相似文献   

13.
Abstract

Five new complexes ZnL2(ClO4)2 (1), CdL2(ClO4)2 (2), CdL2(BF4)2 (3), CdLCl2 (4), and CdL(NO3)2 (5) [L = ((Me2N)2PSe)2NMe] have been synthesized and characterized by elemental analysis, infrared (IR) and multinuclear (31P, 77Se, and 113Cd), and nuclear magnetic resonance (NMR) spectroscopy. The 31P and 77Se NMR data showed that the title ligand is coordinated in a bidentate fashion to the metal center via its both P=Se groups. The solution structure of the cadmium complexes was further confirmed by its 113Cd NMR spectra, which displayed a quintuplet for the perchlorate complex and a triplet for each of the nitrate and chloride complexes, respectively due to coupling with four (two ligands) and two (one ligand) equivalent phosphorus nuclei, consistent with a four-coordinate tetrahedral geometry for the cadmium center. The results are discussed and compared with the corresponding oxo and thio analogues.  相似文献   

14.
Lithocholic acid N-(2-aminoethyl)amide (1) and deoxycholic acid N-(2-aminoethyl)amide(2) have been prepared and characterized by1H, 13C and 15N NMR. The accurate molecular masses of 1 and 2 have been determined by ESI MS. The formation of the Cd2+-complexes (1+Cd and 2+Cd) in CD3OD solution have been detected by 1H,13C, 15N and 113Cd NMR. The 13C NMR chemical shift assignments of 1 and 2 and their Cd2+-complexes are based on DEPT-135 and z-GS 1H,13C HMQC experiments as well as comparison with the assignments of the related structures. The 15N NMR chemical shiftassignments of the ligands and theirCd2+-complexes are based on z-GS1H,15N HMBC experiments. 13C NMR chemical shift differences between 1and its 1:1 Cd2+-complex based on ab initiocalculations at Hartree-Fock SCI-PCM level using3-21G(d) basis set are in agreement with theexperimental shift changes observed onCd2+-complexation.  相似文献   

15.
Two rare-earth metal coordination compounds, (NH4)4[SmIII2(Httha)2]·16H2O (1) (H6ttha?=?triethylenetetramine-N,N,N,N′′,N′′′,N′′′-hexaacetic acid) and (NH4)4[SmIII2(dtpa)2]·10H2O (2) (H5dtpa?=?diethylenetriamine-N,N,N,N′′,N′′-pentaacetic acid), have been synthesized through reflux and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction techniques. SmIII of (NH4)4[SmIII2(Httha)2]·16H2O (1) is nine-coordinate, forming tricapped trigonal prismatic coordination with three amine nitrogens and six oxygens, in which four oxygens are from one ttha and two from the other ttha. (NH4)4[SmIII2(Httha)2]·16H2O (1) crystallizes in the monoclinic crystal system with P2(1)/c space group. The crystal data are: a?=?13.9340(13) Å, b?=?22.890(3) Å, c?=?20.708(2) (14) Å, β?=?99.521(2)°, and V?=?6513.7(13) Å3. There are two –NH+– groups in the [SmIII2(Httha)2]4?. The polymeric (NH4)4[SmIII2(dtpa)2]·10H2O (2) also is nine-coordinate with tricapped trigonal prismatic conformation and crystallizes in the triclinic crystal system with P–1 space group. The cell dimensions are: a?=?9.8240(8) Å, b?=?10.0329(9) Å, c?=?13.0941(11) Å, β?=?77.1640(10)°, and V?=?1227.30(18) Å3. In (NH4)4[SmIII2(dtpa)2]·10H2O, there are two types of ammonium cations, which connect [SmIII2(dtpa)2]4? and lattice water through hydrogen bonds, leading to a 2-D ladder-like layer structure.  相似文献   

16.
Abstract

The complex ion [Co(1,3-pd3a)NO2]? (pd3a=trimethylenediamine-N,N,N′-triacetate ion) was prepared from equatorial-skew-[Co(1,3-pd3a)H2 O]. The absorption spectrum and the 13C NMR spectrum show the nitro product to be a polar isomer. The diamine backbone ring is believed to have the chair conformation.  相似文献   

17.
According to the 1H, 13C and 15N NMR spectroscopic data and DFT calculations, the E‐isomer of 1‐vinylpyrrole‐2‐carbaldehyde adopts preferable conformation with the anti‐orientation of the vinyl group relative to the carbaldehyde oxime group and with the syn‐arrangement of the carbaldehyde oxime group with reference to the pyrrole ring. This conformation is stabilized by the C? H···N intramolecular hydrogen bond between the α‐hydrogen of the vinyl group and the oxime group nitrogen, which causes a pronounced high‐frequency shift of the α‐hydrogen signal in 1H NMR (~0.5 ppm) and an increase in the corresponding one‐bond 13C–1H coupling constant (ca 4 Hz). In the Z‐isomer, the carbaldehyde oxime group turns to the anti‐position with respect to the pyrrole ring. The C? H···O intramolecular hydrogen bond between the H‐3 hydrogen of the pyrrole ring and the oxime group oxygen is realized in this case. Due to such hydrogen bonding, the H‐3 hydrogen resonance is shifted to a higher frequency by about 1 ppm and the one‐bond 13C–1H coupling constant for this proton increases by ~5 Hz. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Two dysprosium coordination compounds, (mnH)2[DyIII(Httha)]·3H2O (1) (H6ttha?=?triethylenetetramine-N,N,N′,N″,N′′′,N′′′-hexaacetic acid and mn?=?methylamine) and (enH2)3[DyIII(ttha)]2·9H2O (2) (en?=?ethylenediamine), were synthesized through direct heating and characterized by elemental analysis, FT-IR, thermal analysis, and single-crystal X-ray diffraction. X-ray diffraction analysis displays that 1 is a mononuclear nine-coordinate complex with a pseudo-monocapped square antiprismatic conformation (MCSAP) crystallizing in the monoclinic crystal system with P2(1)/c space group. The crystal data are as follows: a?=?16.1363(19)?Å, b?=?13.9336(11)?Å, c?=?13.6619(14)?Å, β?=?102.2490(10)°, and V?=?3001.8(5)?Å3. There are two kinds of methylamine cation in 1. They connect [DyIII(Httha)]2?and crystal waters through hydrogen bonds, leading to formation of a 2-D ladder-like layer structure. The polymeric 2 also is a nine-coordinate structure with a pseudo-MCSAP crystallizing in the monoclinic crystal system with P2/c space group. The cell dimensions are: a?=?17.7801(16)?Å, b?=?9.7035(10)?Å, c?=?22.096(2)?Å, β?=?118.874(2)°, and V?=?3338.3(6)?Å3. In 2 there are also two types of ethylenediamine cations. One connects three adjacent [DyIII(ttha)]3? complex anions through hydrogen bonds and the other is symmetrical forming hydrogen bonds with two neighboring [DyIII(ttha)]3? complex anions. These hydrogen bonds result in formation of a 2-D ladder-like layer structure as well.  相似文献   

19.
Summary The1H and13C NMR spectra of the lupin alkaloidangustifoline 1 in four solvents (cyclohexane-d12, CDCl3, CD3CN, and C6D6) were assigned using 2D H,H and H,C COSY and 2D J-resolved spectra. The torsional HCCH angles calculated from the vicinalJ HH coupling constants are essentially in agreement with those expected for the deformed all-chair conformation withendo oriented N(12)-H bond, reported earlier for1 in the solid state. Some arguments seem to point, however, to a small contribution of other conformations: with ring A deformed in another direction, deformed all-chair withexo oriented N(12)-H bond and/or a conformation with ring C in the boat form.Lupin Alkaloids, part 7  相似文献   

20.
The reaction of N,N′‐di(2‐pyridyl)formamidine (HDpyF) with MnCl2‐4H2O afforded the complex MnCl2(HDpyF), which was characterized by X‐ray crystallography. The HDpyF ligand chelates to the Mn(II) center through the first and the third nitrogen atoms to form a six‐membered ring, leaving the second and the fourth nitrogen atoms uncoordinated. The HDpyF ligand is crystallographically disordered such that two different molecules can be solved. The neutral HDpyF ligand adopts the new s‐cis‐syn‐s‐trans conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号