首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
It is known that topological restraints by “chain entanglements” severely affect chain dynamics in polymer melts. In this field-cycling NMR relaxometry and fringe-field NMR diffusometry study, melts of linear polymers in bulk and confined to pores in a solid matrix are compared. The diameter of the pore channels was 10 nm. It is shown that the dynamics of chains in bulk dramatically deviate from those observed under pore constraints. In the latter case, one of the most indicative signatures of the reptation model is verified 28 years after its prediction by de Gennes: The frequency and molecular mass dependencies of the spin-lattice relaxation time obey the power law T!M0 v3/4 on a time scale shorter than the longest Rouse relaxation time τR. The mean squared segment displacement in the pores was also found to be compatible to the reptation law < r2>∝ M−1/2t1/2 predicted for τR < t < τd, where τd is the so-called disengagement time. Contrary to these findings, bulk melts of entangled polymers show frequency and molecular mass dependencies significantly different from what one expects on the basis of the reptation model. The data can however be described with the aid of the renormalized Rouse theory.  相似文献   

2.
用粗粒化的分子动力学(MD)模拟方法从分子层次研究了受限于粗糙壁内的聚合物熔体的动力学性质. 结果表明, 对于链长较短的受限聚合物熔体体系, 随着膜厚的增加, 体系内部高分子链的松弛时间逐渐减少; 然而对于链长较长的受限体系, 聚合物链的松弛时间随着膜厚的增加先减少后增加. 推测这种由于链长的变化所引起的动力学性质的差异源自受限熔体内聚合物链聚集状态的改变, 并且通过考察交叠参数对这种改变进行了分析. 结果表明, 在膜厚增加的过程中, 决定受限状态高分子长链松弛机理的因素逐渐从受限效应转变成为链间的缠结效应.  相似文献   

3.
We calculate the elastic scattering of a long chain in a polymer melt during the process of relaxation after a sudden deformation, i.e., the return to equilibrium with time, while the deformed shape is maintained. The scattering thus depends on the duration t of the relaxation, as well as on the scattering vector, and is a physical quantity characteristic of the dynamics of long chains. The reptation model of de Gennes is used as developed for deformed melts by Doi and Edwards: the chain is confined by other chains in a tube, from which disengagement by the ends is the only way of renewing its configuration. The tube diameter is taken as a parameter. We give both an analytic form and numerical evaluations. On comparison with calculations based on the Rouse model, in which the chain is assumed to be free in a viscous medium, it is seen that the experimental data (given elsewhere) should enable one to distinguish between the two models.  相似文献   

4.
1H spin−lattice nuclear magnetic resonance relaxation experiments were performed for five kinds of dermal fillers based on hyaluronic acid. The relaxation data were collected over a broad frequency range between 4 kHz and 40 MHz, at body temperature. Thanks to the frequency range encompassing four orders of magnitude, the dynamics of water confined in the polymeric matrix was revealed. It is demonstrated that translation diffusion of the confined water molecules exhibits a two-dimensional character and the diffusion process is slower than diffusion in bulk water by 3–4 orders of magnitude. As far as rotational dynamics of the confined water is concerned, it is shown that in all cases there is a water pool characterized by a rotational correlation time of about 4×10−9 s. In some of the dermal fillers a fraction of the confined water (about 10 %) forms a pool that exhibits considerably slower (by an order of magnitude) rotational dynamics. In addition, the water binding capacity of the dermal fillers was quantitatively compared.  相似文献   

5.
Reptational dynamics of bulk polymer chains on a time scale between the Rouse mode relaxation time and the so-called disengagement time is not compatible with the basic thermodynamic law of fluctuations of the number of segments in a given volume. On the other hand, experimental field-cycling NMR relaxometry data of perfluoropolyether melts confined in Vycor, a porous silica glass of nominal pore dimension of 4 nm, closely display the predicted signatures for the molecular weight and frequency dependences of the spin-lattice relaxation time in this particular limit, namely T1 proportional M-1/2nu1/2. It is shown that this contradiction is an apparent one. In this paper a formalism is developed suggesting cooperative chain dynamics under nanoscopic pore confinements. The result is a cooperative reptational displacement phenomenon reducing the root-mean-squared displacement rate correspondingly but showing the same characteristic dependences as the ordinary reptation model. The tube diameter effective for cooperative reptation is estimated on this basis for the sample system under consideration and is found to be of the same order of magnitude as the nominal pore diameter of Vycor.  相似文献   

6.
The thermal transition of Nafion is studied using a molecular dynamics simulation through a chemically realistic model. Static and dynamic properties of polymer melts with different water contents are investigated over a wide range of temperatures to obtain viscometric and calorimetric glass transition temperatures. The effect of cooling rate of the simulation on the glass transition of the hydrated polymer is also examined within the well‐known Williams–Landel–Ferry (WLF) equation. Variation of relaxation times versus temperature shows a fragile‐to‐strong transition. The hydration level has a significant impact on the static and dynamic properties of the polymer chains and water molecules confined in nanometric spaces between polymer chains. The results of this study are useful to predict the behavior of Nafion for various applications including fuel cells, sensors, actuators, and shape memory devices at different temperatures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 907–915  相似文献   

7.
Molecular dynamics simulations on the Kremer-Grest bead-spring model of polymer melts are used to study the effect of spherical nanoparticles on chain diffusion. We find that chain diffusivity is enhanced relative to its bulk value when polymer-particle interactions are repulsive and is reduced when polymer-particle interactions are strongly attractive. In both cases chain diffusivity assumes its bulk value when the chain center of mass is about one radius of gyration R(g) away from the particle surface. This behavior echoes the behavior of polymer melts confined between two flat surfaces, except in the limit of severe confinement where the surface influence on polymer mobility is more pronounced for flat surfaces. A particularly interesting fact is that, even though chain motion is strongly speeded up in the presence of repulsive boundaries, this effect can be reversed by pinning one isolated monomer onto the surface. This result strongly stresses the importance of properly specifying boundary conditions when the near surface dynamics of chains are studied.  相似文献   

8.
The authors present the results of molecular dynamics simulations of polymer films confined by smooth walls. Simulations were performed for a wide range of chain lengths covering both nonentangled and entangled regions, as well as film thicknesses ranging from the order of unperturbed chain size to the bulk state. The simulation results for the chain size dependence on the film thickness are compared with the prediction of the scaling model. By measuring the correlation function of the end-to-end vectors, we have determined the relaxation time of confined polymer chains in different entangled states. It is shown that there is a minimum in the relaxation time of long chains when decreasing the film thickness, which is partially due to the confinement-induced disentanglement effect.  相似文献   

9.
We present an atomistic simulation scheme for the determination of the hydration number (h) of aqueous electrolyte solutions based on the calculation of the water dipole reorientation dynamics. In this methodology, the time evolution of an aqueous electrolyte solution generated from ab initio molecular dynamics simulations is used to compute the reorientation time of different water subpopulations. The value of h is determined by considering whether the reorientation time of the water subpopulations is retarded with respect to bulk-like behavior. The application of this computational protocol to magnesium chloride (MgCl2) solutions at different concentrations (0.6–2.8 mol kg−1) gives h values in excellent agreement with experimental hydration numbers obtained using GHz-to-THz dielectric relaxation spectroscopy. This methodology is attractive because it is based on a well-defined criterion for the definition of hydration number and provides a link with the molecular-level processes responsible for affecting bulk solution behavior. Analysis of the ab initio molecular dynamics trajectories using radial distribution functions, hydrogen bonding statistics, vibrational density of states, water-water hydrogen bonding lifetimes, and water dipole reorientation reveals that MgCl2 has a considerable influence on the hydrogen bond network compared with bulk water. These effects have been assigned to the specific strong Mg-water interaction rather than the Cl-water interaction.  相似文献   

10.
The dielectric relaxation spectrum over the frequency range 102 to 1.8×109 Hz of 4‐octyl‐4′‐cyanobiphenyl, 8CB, in bulk and confined to 200 nm diameter cylindrical pores is reported. We used matrices with parallel cylindrical pores, obtaining different alignments of the molecular director depending on the treatment. Results show that there are two relaxations in the isotropic phase and in the mesophases for parallel alignment and three for perpendicular alignment. The molecular origin of theses modes and the effect of the confinement on their dynamics are discussed. To compare properly the results for bulk and confined 8CB, a re‐scaling of the experimental data is proposed.  相似文献   

11.
We have developed a morphologic method to investigate the relaxation processing of the stretched polymer chains in melts, in which an atomic force microscope probe was used to shear the surface of an isotactic polypropylene melt to obtain the isolated shish‐kebab structure. We present the results of the time dependence of length of the isolated shish‐kebab structure and the stress dependence of the kebab density along the direction of shish in this paper. Our results demonstrate that the shear‐oriented polymer melts show the relaxation dynamics of worm‐like chain where the length deficit of the isolated shish‐kebab structure is scaled with the relaxation time as a power of 1/3. The melting behavior of shish‐kebab structure was also investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 907–914  相似文献   

12.
We used differential scanning calorimetry, neutron scattering, and proton NMR to investigate the phase behavior, the structure, and the dynamics of benzene confined in a series of cylindrical mesoporous materials MCM-41 and SBA-15 with pore diameters, d, between 2.4 and 14 nm. With this multitechnique approach, it was possible to determine the structure and, for the first time to our knowledge, the density of confined benzene as a function of temperature and pore size. Under standard cooling rates, benzene partially crystallizes in SBA-15 matrixes (4.7 相似文献   

13.
14.
Summary: Monte Carlo computer simulations have been performed for model polymers confined in slits of thickness comparable to the transverse diameter of the chains. The density of polymer within the slits is allowed to vary with the slit thickness in such a way that the content of the slits is always in equilibrium with a large reservoir of bulk polymer. The calculations reveal the presence of polymer‐mediated attractive or repulsive interactions between the slit plates, oscillating with the slit thickness in good agreement with experimental results.

The base cell used in the simulations.  相似文献   


15.
A novel technique to contact (ultra‐) thin polymer layers is presented which enables to compare the molecular dynamics in grafted films of poly(γ‐benzyl‐L ‐glutamate) (PBLG) to that of the bulk polymer by means of dielectric spectroscopy. Two relaxation processes are observed which are assigned to restricted fluctuations of the helical main chains and to the dynamic glass transition of the side chains. Furthermore, the swelling behavior of PBLG is studied.  相似文献   

16.
A bead-spring off-lattice model of a polymer chain with repulsive interactions among repeating units confined into straight tubes of various cross sections, DT2, is studied by Monte Carlo simulation. We are also varying the chain length from N = 16 to 128 and the strength of a short-range attractive interaction between the repeating units and the walls of the tube. Longitudinal and perpendicular static linear dimensions of the chains are analyzed, as well as the density profile of repeating units across the tube. These data are interpreted in terms of scaling concepts describing the crossover between three-dimensional and quasi-one-dimensional chain conformations and the adsorption transition of chains at flat infinite walls, respectively. We also study the time-dependent mean-square displacements of repeating units and obtain various relaxation times. It is shown that both relaxation times scaling proportional to N2 and to N3 play a role in the reptative motion of the chain in the tubes.  相似文献   

17.
Several predictions for a recently proposed mesoscopic model for polymer melts and concentrated solutions is presented. It is a single Kramers chain model in which elementary motions of the Orwoll-Stockmayer type are allowed. However, for this model, the bead jumps are no longer given by a Markovian probability, but rather are described by a fractal “waiting-time” distribution function, with a single adjustable parameter β, which describes the long-time behavior of the distribution: ∼ 1/t1+β. We find that the model predicts D ∼ 1/N2 and η0N3.4 for β ≈︁ 1.4, where N is the degree of polymerization. The generalized model predicts that the relaxation spectrum has a plateau regime whose height is independent of N, but whose width is strongly N dependent, in agreement with experiment. The model also predicts that rings will diffuse somewhat more slowly than linear chains of the same molecular weight (about 80% as fast), with the same scaling dependence on N as linear chains, also in agreement with preliminary data.  相似文献   

18.
This article describes the dielectric relaxation behavior of flexible polymer chains having the so‐called type‐A dipoles parallel along the chain backbone. This behavior reflects the global chain motion. Viscoelastically well known features of this motion, such as the power‐law relationship between the relaxation time and molecular weight of entangled linear chains (τ1 ∝ M3.5), are also observed dielectrically. More importantly, the dielectric behavior of linear chains having once‐inverted type‐A dipoles enables us to find some detailed dynamic features such as changes in the eigenfunctions fp of a local correlation function with the chain concentration in solutions. These changes are discussed in relation to motional coupling of concentrated chains. The dielectric properties detect the orientational correlation of two submolecules in the chain at two separate times, while the viscoelastic properties reflect the isochronal orientational anisotropy of individual submolecules. Thus the chain motion is differently averaged in the dielectric and viscoelastic properties, and comparison of these properties enables us to find novel dynamic features. Specifically, this comparison reveals the validity of the tube dilation molecular picture for entangled linear chains and weakening of the short‐time coherence of the submolecule motion due to the constraint release mechanism. Moreover, the dielectric method enables us to investigate the chain dynamics under strong flow and/or in a molecularly narrow space. In particular, the retarded dielectric relaxation found for homopolymers and block copolymers in such narrow spaces (in the microdomains for the latter) indicates important effects of the spatial and thermodynamic constraints on the global chain motion. All the above results in turn demonstrate the importance of the dielectric method in investigations of the polymer dynamics.  相似文献   

19.
Summary. We studied the properties of a simplified model of star-branched polymers confined in a slit formed by two parallel and impenetrable surfaces. The chains were built of identical united atoms (segments) whose positions were restricted to vertices of a simple cubic lattice. The polymer excluded volume and polymer segment-surface contact interactions were also introduced into the model. The properties of the model chains were determined by means of Monte Carlo simulations with a Metropolis-type sampling algorithm based on local changes of chain’s conformation. The structure of star-branched chains was investigated and the influence of the confinement and the temperature on the chain dimensions and structure was studied. It was shown that for chains in the adsorbing slits their sizes do not exhibit a universal behavior contrary to confined athermal polymers. The polymers in narrow slits at higher temperatures still exhibited features of a three-dimensional chain. It was also shown that chains in small slits and at low temperatures were fully adsorbed at one of the surfaces but could also switch the surface rapidly.  相似文献   

20.
We report molecular dynamics simulation results for Stockmayer fluids confined to narrow slitlike pores with structureless, nonconducting walls. The translational and rotational dynamics of the dipolar particles have been investigated by calculating autocorrelation functions, diffusion coefficients, and relaxation times for various pore widths (five or less particle diameters) and directions parallel and perpendicular to the walls. The dynamic properties of the confined systems are compared to bulk properties, where corresponding bulk and pore states at the same temperature and chemical potential are determined in parallel grand canonical Monte Carlo simulations. We find that the dynamic behavior inside the pore depends on the distance from the walls and can be strongly anisotropic even in globally isotropic systems. This concerns especially the particles in the surface layers close to the walls, where the single particle and collective dipolar relaxation resemble that of true two-dimensional dipolar fluids with different in-plane and out-of-plane relaxations. On the other hand, bulklike relaxation is observed in the pore center of sufficiently wide pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号