首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We present a new systematic method to compute the Riemann mapping from the outside of the unit disc to the outside of a simply connected domain. We derive explicit relations between the coefficients of the Riemann mapping and the generalized polarization tensors associated with the domain. Because the generalized polarization tensors can be computed numerically, we are able to compute the coefficients of the Riemann mapping using these relations. Effectiveness of the method is validated by numerical examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, an asymptotic analysis of the (non‐conserved) Penrose–Fife phase field system for two vanishing time relaxation parameters ε and δ is developed, in analogy with the similar analyses for the phase field model proposed by G. Caginalp (Arch. Rational Mech. Anal. 1986; 92 :205–245), which were carried out by Rossi and Stoth (Adv. Math. Sci. Appl. 2003; 13 :249–271; Quart. Appl. Math. 1995; 53 :695–700). Although formally the singular limits for ε ↓ 0 and for ε and δ ↓ 0 are, respectively, the viscous Cahn–Hilliard equation and the Cahn–Hilliard equation, it turns out that the Penrose–Fife system is indeed a bad approximation for these equations. Therefore, we consider an alternative approximating phase field system, which could be viewed as a generalization of the classical Penrose–Fife phase field system, featuring a double non‐linearity given by two maximal monotone graphs. A well‐posedness result is proved for such a system, and it is shown that the solutions converge to the unique solution of the viscous Cahn–Hilliard equation as ε ↓ 0, and of the Cahn–Hilliard equation as ε ↓ 0 and δ ↓ 0. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A conjecture concerning the Cramér–Wold device is answered in the negative by giving a Fourier-free, probabilistic proof using only elementary techniques. It is also shown how a geometric idea allows one to interpret the Cramér–Wold device as a special case of a more general concept.  相似文献   

5.
We propose a new method to analyze and efficiently represent data recorded on a domain of general shape in by computing the eigenfunctions of Laplacian defined over there and expanding the data into these eigenfunctions. Instead of directly solving the eigenvalue problem on such a domain via the Helmholtz equation (which can be quite complicated and costly), we find the integral operator commuting with the Laplacian and diagonalize that operator. Although our eigenfunctions satisfy neither the Dirichlet nor the Neumann boundary condition, computing our eigenfunctions via the integral operator is simple and has a potential to utilize modern fast algorithms to accelerate the computation. We also show that our method is better suited for small sample data than the Karhunen–Loève transform/principal component analysis. In fact, our eigenfunctions depend only on the shape of the domain, not the statistics of the data. As a further application, we demonstrate the use of our Laplacian eigenfunctions for solving the heat equation on a complicated domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号