首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 62 毫秒
1.
A unified second-order moment (USM) turbulence-chemistry model for simulating Nox formation in turbulent combustion is proposed. All of correlations, including the correlation of the reaction-rate coefficient fluctuation with the concentration fluctuation, are closed by the transport equations in the same form. This model discards the approximation of series expansion of the exponential function or the approximation of using the product of several 1-D PDF‘s instead of a joint PDF. It is much simpler than other refined models, such as the PDF transport equation model and the condi-tional moment closure model. The proposed model is used to simulate methane-air swirling turbulent combustion and Nox formation. The prediction results are in good agreement with the experimental results.  相似文献   

2.
In this paper, we have proposed a time marching intregral equation method which does not have the limitation of the time linearized integral equation method in that the latter method can not satisfactorily simulate the shock-wave motions. Firstly, a model problem—one dimensional initial and boundary value wave problem is treated to clarify the basic idea of the new method. Then the method is implemented for 2-D and 3-D unsteady transonic flow problems. The introduction of the concept of a quasi-velocity-potential simplifies the time marching integral equations and the treatment of trailing vortex sheet condition. The numerical calculations show that the method is reasonable and reliable.  相似文献   

3.
The Godunov‐projection method is implemented on a system of overlapping structured grids for solving the time‐dependent incompressible Navier–Stokes equations. This projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The Godunov procedure is applied to estimate the non‐linear convective term in order to provide a robust discretization of this terms at high Reynolds number. In order to obtain the pressure field, a separate procedure is applied in this modified Godunov‐projection method, where the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain, as they offer the flexibility of simplifying the grid generation around complex geometrical domains. This combination of projection method and overlapping grid is also parallelized and reasonable parallel efficiency is achieved. Numerical results are presented to demonstrate the performance of this combination of the Godunov‐projection method and the overlapping grid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
An unstructured non‐nested multigrid method is presented for efficient simulation of unsteady incompressible Navier–Stokes flows. The Navier–Stokes solver is based on the artificial compressibility approach and a higher‐order characteristics‐based finite‐volume scheme on unstructured grids. Unsteady flow is calculated with an implicit dual time stepping scheme. For efficient computation of unsteady viscous flows over complex geometries, an unstructured multigrid method is developed to speed up the convergence rate of the dual time stepping calculation. The multigrid method is used to simulate the steady and unsteady incompressible viscous flows over a circular cylinder for validation and performance evaluation purposes. It is found that the multigrid method with three levels of grids results in a 75% reduction in CPU time for the steady flow calculation and 55% reduction for the unsteady flow calculation, compared with its single grid counterparts. The results obtained are compared with numerical solutions obtained by other researchers as well as experimental measurements wherever available and good agreements are obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Implicit solution of time spectral method for periodic unsteady flows   总被引:2,自引:0,他引:2  
The present paper investigates the implicit solution of time spectral model for periodic unsteady flows. In the time spectral model, the physical time derivative is approximated using spectral method. The robustness issues associated with implicit solution of time spectral model are analyzed and validated by numerical results. It is found that spectral approximation of the time derivative weakens the diagonal dominance property of the Jacobian matrix, resulting in the deterioration of stability and convergence speed. In this paper we propose to solve the coupled governing equations implicitly using multigrid preconditioned generalized minimal residual (GMRES) method, which demonstrates favorable convergence speed. Also it is demonstrated that the current method is insensitive to the variations of frequency and number of harmonics. Comparison of computation results with dual time step unsteady computation validates the high efficiency of the current method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The pseudo‐time formulation of Jameson has facilitated the use of numerical methods for unsteady flows, these methods have proved successful for steady flows. The formulation uses iterations through pseudo‐time to arrive at the next real time approximation. This iteration can be used in a straightforward manner to remove sequencing errors introduced when solving mean flow equations together with another set of differential equations (e.g. two‐equation turbulence models or structural equations). The current paper discusses the accuracy and efficiency advantages of removing the sequencing error and the effect that building extra equations into the pseudo‐time iteration has on its convergence characteristics. Test cases used are for the turbulent flow around pitching and ramping aerofoils. The performance of an implicit method for solving the pseudo‐steady state problem is also assessed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
This paper uses the element‐free Galerkin (EFG) method to simulate 2D, viscous, incompressible flows. The control equations are discretized with the standard Galerkin method in space and a fractional step finite element scheme in time. Regular background cells are used for the quadrature. Several classical fluid mechanics problems were analyzed including flow in a pipe, flow past a step and flow in a driven cavity. The flow field computed with the EFG method compared well with those calculated using the finite element method (FEM) and finite difference method. The simulations show that although EFG is more expensive computationally than FEM, it is capable of dealing with cases where the nodes are poorly distributed or even overlap with each other; hence, it may be used to resolve remeshing problems in direct numerical simulations. Flows around a cylinder for different Reynolds numbers are also simulated to study the flow patterns for various conditions and the drag and lift forces exerted by the fluid on the cylinder. These forces are calculated by integrating the pressure and shear forces over the cylinder surface. The results show how the drag and lift forces oscillate for high Reynolds numbers. The calculated Strouhal number agrees well with previous results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the optimization of unsteady Navier–Stokes flows using the variational level set method. The solid–liquid interface is expressed by the level set function implicitly, and the fluid velocity is constrained to be zero in the solid domain. An optimization problem, which is constrained by the Navier–Stokes equations and a fluid volume constraint, is analyzed by the Lagrangian multiplier based adjoint approach. The corresponding continuous adjoint equations and the shape sensitivity are derived. The level set function is evolved by solving the Hamilton–Jacobian equation with the upwind finite difference method. The optimization method can be used to design channels for flows with or without body forces. The numerical examples demonstrate the feasibility and robustness of this optimization method for unsteady Navier–Stokes flows.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐resolution numerical scheme based on the MUSCL–Hancock approach is developed to solve unsteady compressible two‐phase dilute viscous flow. Numerical considerations for the development of the scheme are provided. Several solvers for the Godunov fluxes are tested and the results lead to the choice of an exact Riemann solver adapted for both gaseous and dispersed phases. The accuracy of the scheme is proven step by step through specific test cases. These simulations are for one‐phase viscous flows over a flat plate in subsonic and supersonic regimes, unsteady flows in a low‐pressure shock tube, two‐phase dilute viscous flows over a flat plate and, finally, two‐phase unsteady viscous flows in a shock tube. The results are compared with well‐established analytical and numerical solutions and very good agreement is achieved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号