首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellulose acetate has been utilized in a variety of separation and purification processes. In membrane separation, cellulosics, in particular cellulose acetate, have played important roles. Hemodialysis and desalination are the established fields where acetate membranes have been applied. Recently, a new application, that is the purification of drinking water, is growing. The history of cellulosic membranes, preparation of acetate membranes, and applications will be reviewed. Cellulose acetate is also useful in chromatography and related separation technologies. These application will also be reviewed and the relationship between the superstructure of cellulose triacetate and its adsorptive behavior is briefly mentioned.  相似文献   

2.
A number of bioactive peptides find their potential applications in food or pharmaceutical industry; however, there arise some limitations of their large-scale production to satisfy market demands. Although pressure-driven membrane processes are able of continuous production and separation of peptides, these technologies often demonstrate insufficient selectivity. Electrophoresis is a well-known purification process characterized by high resolution of separated species but it is limited by relatively low production capacity. On the other hand, electromembrane processes offer high production capacity but their limitation is the size of separated molecules. Electrodialysis with inserted ultrafiltration membranes is an alternative method of peptide separation into fractions, their concentration and possibly demineralization at the same time to achieve large production quantities. It is a hybrid process combining conventional electrodialysis and electrophoresis principles using ultrafiltration membranes. These membranes serve as a molecular barrier separating two types of solution while the driving force remains electric potential difference. This article offers state-of-the-art summary in the field of bioactive peptide separation and fractionation by electrodialysis with ultrafiltration membranes.  相似文献   

3.
Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In thermochemical processes for hydrogen production from fossil fuels, separation and purification is a critical technology. Where water-gas shift reaction is involved for converting the carbon monoxide to hydrogen, membrane reactors show great promises for shifting the equilibrium. Membranes are also important to the subsequent purification of hydrogen. For hydrogen production and purification, there are generally two classes of membranes both being inorganic: dense phase metal and metal alloys, and porous ceramic membranes. Porous ceramic membranes are normally prepared by sol-gel or hydrothermal methods, and have high stability and durability in high temperature, harsh impurity and hydrothermal environments. In particular, microporous membranes show promises in water gas shift reaction at higher temperatures. In this article, we review the recent advances in both dense phase metal and porous ceramic membranes, and compare their separation properties and performance in membrane reactor systems. The preparation, characterization and permeation of the various membranes will be presented and discussed. We also aim to examine the critical issues in these membranes with respect to the technical and economical advantages and disadvantages. Discussions will also be made on the relevance and importance of membrane technology to the new generation of zero-emission power technologies.  相似文献   

4.
5.
Pervaporation is one of the developing membrane technologies that can be used for various industrial applications but for a predefined task, the optimal process design is unlikely to consist solely of pervaporation. Often the optimised solution becomes a hybrid process combining pervaporation with one or more other separation technologies. A distinction will be made between hybrid and integrated processes. Hybrid processes are important and consequently need to be considered in process design. This paper focuses on pervaporation–based hybrid processes that have been realised on an industrial scale. Both present and future prospects of applying these process combinations will be reviewed. The emphasis of this paper is, therefore, on pervaporation combined with distillation and with chemical reactors. The economic potential of these hybrid processes is evaluated, for various applications, by cost comparisons between the pervaporation-based hybrid processes and alternative separation processes. Pervaporation-based processes for waste water treatment and biotechnology applications involve other types of pervaporation based hybrid processes and have been excluded from this review.  相似文献   

6.
After a long period of dormancy, membrane separation processes have begun to emerge as technically significant and commercially relevant unit operations. Prior to the mid-sixties, synthetic membranes were employed for those few specialized laboratory applications which could tolerate low permeability and poor selectivity or in electrochemical applications excluding, e. g., batteries, fuel cells, chloride-alkali electrolysis, where marginal chemical stability remained a severe limitation. Within the framework of a broad R & D program started in the US in the mid-fifties and devoted to the production of fresh water from brackish and seawater, developments of more suitable membranes arose out of the application of the principles of physical chemistry, modern polymer chemistry (especially surface or interfacial polymerization and polycondensation technology), and electron microscopy. In particular, it was learned that asymmetric membrane structures comprise a very thin consolidated barrier layer (5000 Å or less for membranes with economically practical filtration rates) supported by an integral but less dense substrate which does not participate in the transport process. Later and after much effort, composite membranes were developed in which the salt-rejecting skin (still only 5000 Å thick) was placed atop a supporting matrix formed from a more chemically and mechanically stable polymer.—The main desalination research effort led to several spin-off developments in related membrane fields, e.g. the successful preparation and commercialization of ultrafiltration technology in the automobile, food, and chemical industries. Also, ion-exchange membranes prepared from perfluorinated polymers offered the electrochemical industry much better chemical stability than the earlier phenolic-resin-based ion-exchange membranes.—Current efforts are aimed at the improved selectivity and stability required for very specific separation processes (e.g. separation of heavy metal salts from waste water or selective enrichment of gases). In the future, the mechanisms of biological processes will have to be exploited for successful development of synthetic membranes suitable for more sophisticated separations.  相似文献   

7.
Organic-inorganic composite membranes based on poly(vinyl alcohol)/SiO(2) were prepared via an aqueous dispersion polymerization route and anion-exchange groups were introduced in the membrane matrix by the chemical grafting of 4-vinylpyridine with the desired content. These membranes were extensively characterized for their surface morphology, thermal stability, water content, and surface-charge properties using SEM, TEM, FTIR, TGA, water uptake, and ion-exchange capacity measurements. Counterion transport numbers across these membranes were estimated from membrane potential data. Membrane conductance measurements were also performed and these data were used for the estimation of values of counterion diffusion coefficients in the membrane phase. Physicochemical and electrochemical properties of these membranes and equivalent pore radius (estimated from electroosmotic flux measurements) were found to be highly dependent on the 4-vinylpyridine (4-VP) content in the membrane phase. It was also observed that for better selectivity and membrane conductivity of anion-exchange membranes complete optimization of the loading of 4-VP in the membrane phase is necessary. Furthermore, among these, membrane with 25% loading with 4-VP exhibited very good selectivity, water content, and ion-exchange capacity along with moderate membrane conductivity, which may be used for their application in electro-driven separation at elevated temperatures or for other electrochemical processes.  相似文献   

8.
Interpolymer films of poly-ethylene and styrene-divinyl benzene copolymer were subjected to chlorosulfonation or chloromethylation then amination for the preparation of homogeneous type of cation- or anion-exchange membranes, respectively. Heterogeneous types of ion-exchange membranes were prepared from polyvinyl chloride (PVC) as binder and ion-exchange resin powder in tetrahydrofuran solvent. Membrane potential and conductance measurements have been carried out in NaCl(aq), CuCl2(aq) and AlCl3(aq) solutions at different concentrations to investigate the relationship between concentration of fixed charges and electrochemical properties of these membranes. On the basis of the micro-heterogeneous model, describing the micro-structure of the membrane material, the counter-ion diffusion coefficients were estimated. Membrane conductance data, along with values of concentration of fixed ionic site in the membrane, were used for the estimation of the tortuosity factor and salt permeability employing non-equilibrium thermodynamic principles. It was concluded that electrochemical transport properties of homogeneous type of ion-exchange membranes are superior to those for heterogeneous type of ion-exchange membranes. However, both types of membranes are suitable for electrodriven separation of mono-, bi- and tri-valent electrolytes.  相似文献   

9.
透氢钯复合膜的原理、制备及表征   总被引:1,自引:0,他引:1  
钯及其合金膜由于具有透氢性好和耐高温的特点,除了用作氢气分离和纯化器外,还可以用作脱氢、制氢等反应的反应器,以实现反应和分离的一体化,并提高转化率和选择性。本文综述了钯基复合膜的原理、制备及表征,并重点介绍了本研究组的光催化镀膜工艺。  相似文献   

10.
透氢钯复合膜的原理、制备及表征   总被引:2,自引:0,他引:2  
黄彦  李雪  范益群  徐南平 《化学进展》2006,18(2):230-238
钯及其合金膜由于具有透氢性好和耐高温的特点,除了用作氢气分离和纯化器外,还可以用作脱氢、制氢等反应的反应器,以实现反应和分离的一体化,并提高转化率和选择性。本文综述了钯基复合膜的原理、制备及表征,并重点介绍了本研究组的光催化镀膜工艺。  相似文献   

11.
Two‐dimensional (2D) materials with atomic thicknesses have aroused great interest as promising building blocks for the preparation of ultrathin 2D membranes. These 2D membranes can exhibit unprecedentedly high separation permeance owing to their ultrasmall membrane thicknesses and superior selectivity because of their size‐selective nanopores and/or nanochannels. Until now, a large number of 2D membranes with good performance have been reported, highlighting the potential of these novel membranes for efficient liquid and gas separations. Summarized in this review are the latest advances in 2D membranes, with a special focus on industrially attractive separation processes, fabrication methods of laminar membranes, choices of membrane materials, designs of membrane structures, and unique membrane transport properties. Opportunities and challenges of 2D membranes for commercial applications are also briefly discussed.  相似文献   

12.
Polymer membranes used in separation applications exhibit a tradeoff between permeability and selectivity. That is, membranes that are highly permeable tend to have low selectivity and vice versa. For ion-exchange membranes used in applications such as electrodialysis and reverse electrodialysis, this tradeoff is expressed in terms of membrane permselectivity (i.e., ability to selectively permeate counter-ions over co-ions) and ionic conductivity (i.e., ability to transport ions in the presence of an electric field). The use of membrane permselectivity and ionic conductivity to illustrate a tradeoff between counter-ion throughput and counter-ion/co-ion selectivity in ion-exchange membranes complicates the analysis since permselectivity depends on the properties of the external solution and ionic conductivity depends on the transport of all mobile ions within a membrane. Furthermore, the use of these parameters restricts the analysis to ion-exchange membranes used in applications in which counter-ion/co-ion selectivity is required. In this study, the permselectivity-conductivity tradeoff relation for ion-exchange membranes is reformulated in terms of ion concentrations and diffusion coefficients in the membrane. The reformulated framework enables a direct comparison between counter-ion throughput and counter-ion/co-ion selectivity and is general. The generalizability of the reformulated tradeoff relation is demonstrated for cation-exchange membranes used in vanadium redox flow batteries.  相似文献   

13.
This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.  相似文献   

14.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   

15.
New therapeutics that are being developed rely more and more on large and complex biomacromolecules like proteins, DNA, and viral particles. Manufacturing processes are being redesigned and optimized both upstream and downstream to cope with the ever-increasing demand for the above target molecules. In downstream processing, LC still represents the most powerful technique for achieving high yield and high purities of these molecules. In most cases, however, the separation technology relies on conventional particle-based technology, which has been optimized for the purification of smaller molecules. New technologies are, therefore, needed in order to push the downstream processing ahead and into the direction that will provide robust, productive, and easy to implement methods for the production of novel therapeutics. New technologies include the renaissance of membranes, various improvements of existing technologies, but also the introduction of a novel concept--the continuous bed or monolithic stationary phases. Among different introduced products, Convective Interaction Media short monolithic columns (SMC) that are based on methacrylate monoliths exhibit some interesting features that make them attractive for these tasks. SMC can be initially used for fast method development on the laboratory scale and subsequently efficiently transferred to preparative and even more importantly to industrial scale. A brief historical overview of methacrylate monoliths is presented, followed by a short presentation of theoretical considerations that had led to the development of SMC. The design of these columns, as well as their scale-up to large units, together with the methods for transferring gradient separations from one scale to another are addressed. Noninvasive methods that have been developed for the physical characterization of various batches of SMC, which fulfill the regulatory requirements for cGMP production, are discussed. The applications of SMC for the separation and purification of large biomolecules, which demonstrate the full potential of this novel technology for an efficient downstream processing of biomolecules, are also presented.  相似文献   

16.
Recent progress in the development of various diamond-related materials (DRMs) has induced a strong interest in their use as a stationary phase in various separation techniques. DRMs meet many requirements for use as a stationary phase in chromatography, including excellent mechanical and chemical stability, high thermal stability, low chemical reactivity of the surface, and biocompatibility. The general physicochemical properties of diamond and the preparation of different types of DRMs are reviewed, and an overview is provided of current and possible future applications in solid-phase extraction and various separation technologies.  相似文献   

17.
Polypyrrole composite cation- and anion-exchange membranes (CEM and AEM), in which polypyrrole (PPY) coated on one surface of the membrane as a thin layer, were prepared by chemical polymerization of pyrrole in the presence of high oxidant concentration (Na2S2O8). Existence of polypyrrole layer on the both types of ion-exchange membranes were confirmed by recording their coating density, SEM images and conductivity. These membranes were extensively characterized by recording their properties such as water uptake, ion-exchange capacity, contact angle, permselectivity and membrane conductivity as a function of polymerization time such as. It was observed that due to coating of PPY for 2 h, membrane permselectivity of CEM for NaCl (0.907) was reduced to 0.873, while it was increased from 0.747 to 0.889 in the case of AEM. Similar behaviors were also obtained for bi-valent electrolytes. Electrodialysis experiments were also conducted with polypyrrole composite ion-exchange membranes using mixed electrolytic systems. Relative dialytic rates for NaCl with respect to other bi-valent electrolyte were varied in between 5 and 8 (depending on bi-valent electrolyte), which suggested the feasible and efficient separation of mono-valent from bi-valent electrolyte. Slower electro-migration of bi-valent electrolyte (CaCl2, MgCl2 and CuCl2) in comparison to NaCl was explained on the basis of synergetic effect of sieving of bulkier bi-valent cations by tight and rigid polypyrrole layer and the difference in electrostatic and hydrophobic–hydrophilic repulsion force between bi-valent cations and mono-valent cation. It was concluded that these composite membranes are suitable for the efficient separation of same type of charged ions by electro-driven separation techniques.  相似文献   

18.
The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs).  相似文献   

19.
结晶是一种传统的分离与纯化技术,目前在高纯度化合物的分离纯化过程中发挥着至关重要的作用,广泛应用于化工、制药等领域。基于质量源于设计理念的过程分析技术为结晶过程的监测、反馈及其控制提供了高效且可靠的支持。该文对衰减全反射傅里叶变换红外光谱技术、拉曼光谱技术、近红外光谱技术、聚光束反射测量技术等多种过程分析技术在结晶过程中的应用进行综述,系统总结上述技术的现状、优缺点,并对未来发展趋势进行展望,以期为结晶工艺的在线监控提供有效参考。  相似文献   

20.
Ion separations are important for resource recovery, water treatment, and energy production and storage. Techniques such as chemical precipitation, selective adsorption, and solvent extraction are effective, but membranes may separate ions continuously with less waste and lower energy costs. Separation of monovalent and multivalent ions with nanofiltration or electrodialysis membranes already enables water softening and edible salt purification. Similar membranes are attractive as separators in vanadium redox flow batteries. Selective partitioning of divalent counter-ions into ion-exchange membranes even allows transport of these ions against their concentration gradients in salt mixtures. However, separations of ions with the same charge is more challenging. Recent research demonstrated highly selective ion “sieving” at small scales. Separations using electrical potentials and differences in ion electrophoretic mobilities are promising, but relatively unexplored. Carrier-mediated transport affords high selectivity in liquid membranes, but these systems are not very stable, and selective transport via hopping between anchored carriers has proven elusive. Finally, this paper discusses how concentration polarization decreases selectivities in many membrane processes. Although development of selective, inexpensive ion-separation membranes is a work in progress, successes in water softening and edible salt purification suggests that future selective membranes will serve as complementary methods to traditional purification techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号