首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interstitial space is a rate limiting physiological barrier to non-viral gene delivery. External pulsed electric fields have been proposed to increase DNA transport in the interstitium, thereby improving non-viral gene delivery. In order to characterize and improve the interstitial transport, we developed a reproducible single molecule detection method to observe the electromobility of DNA in a range of pulsed, high field strength electric fields typically used during electric field-mediated gene delivery. Using agarose gel as an interstitium phantom, we investigated the dependence of DNA electromobility on field magnitude, pulse duration, pulse interval, and pore size in the interstitial space. We observed that the characteristic electromobility behavior, exhibited under most pulsing conditions, consisted of three distinct phases: stretching, reptation, and relaxation. Electromobility depended strongly on the field magnitude, pulse duration, and pulse interval of the applied pulse sequences, as well as the pore size of the fibrous matrix through which the DNA migrated. Our data also suggest the existence of a minimum pulse amplitude required to initiate electrophoretic transport. These results are useful for understanding the mechanisms of DNA electromobility and improving interstitial transport of genes during electric field-mediated gene delivery.  相似文献   

2.
Liquid chromatography plays a central role in process-scale manufacturing of therapeutic plasmid DNA (pDNA) for gene therapy and DNA vaccination. Apart from its use as a preparative purification step, it is also very useful as an analytical tool to monitor and control pDNA quality during processing and in final formulations. This paper gives an overview of the use of pDNA chromatography. The specificity of pDNA purification and the consequent limitations to the performance of chromatography are described. Strategies currently used to overcome those limitations, as well as other possible solutions are presented. Applications of the different types of chromatography to the purification of therapeutic pDNA are reviewed, and the main advantages and disadvantages behind each technique highlighted.  相似文献   

3.
Construction and control of plasmid DNA network   总被引:1,自引:0,他引:1  
Wu A  Li Z  Zhou H  Zheng J  Wang E 《The Analyst》2002,127(5):585-587
The influences of different cations on plasmid DNA network structures on a mica substrate were investigated by atomic force microscopy (AFM). Interactions between the DNA strands and mica substrate, and between the DNA strands themselves were more strongly influenced by the complex cations (Fe(phen)3(2+), Ni(phen)3(2+), and Co(phen)3(3+)) than by the simple cations (Mg2+, Mn2+, Ni2+, Ca2+, Co3+). The mesh height of the plasmid DNA network was higher when the complex cations were added to DNA samples. The mesh size decreased with increasing DNA concentration and increased with decreasing DNA concentration in the same cation solution sample. Hence, plasmid DNA network height can be controlled by selecting different cations, and the mesh size can be controlled by adjusting plasmid DNA concentration.  相似文献   

4.
ABSTRACT

A new family of conjugates between the Hoechst minor groove binder and the TACN metal ion ligand connected through hydrophobic alkyl or more hydrophilic oxyethyl linkers of different length has been prepared. The linkers are connected to the convex side of the Hoechst skeleton thus forcing the TACN ligand to exit the minor groove and interact with the phosphate backbone of DNA. The conjugates preserve the binding mode of Hoechst with an affinity influenced by the nature of the linker, the more hydrophobic being the more efficient. Coordination of Cu(II) or Zn(II) poorly affect these parameters. Nevertheless, the Zn(II) complex bearing a C6 linear alkyl linker induced a modest but reproducible acceleration of the hydrolytic cleavage of DNA which can be ascribed to the ability of the conjugate to deliver the hydrolytic subunit close to the DNA phosphodiester bonds.  相似文献   

5.
There is considerable interest in using size exclusion chromatography (SEC) to analyze and purify specific plasmid isoforms, but there is currently no fundamental understanding of the effects of plasmid size and morphology on plasmid behavior in SEC. Experiments were performed for plasmids from 3.0 to 17.0 kbp in size. The linear and open-circular isoforms were generated from the supercoiled plasmid by appropriate enzymatic digestion. SEC retention data were obtained using a Sephacryl S-1000 SF resin packed column and an Agilent HPLC system over a range of flow rates using buffers of different ionic strength and composition. The plasmid partition coefficients, KP, were evaluated from the first statistical moment of the chromatographic peak. The partition coefficient decreased with increasing plasmid size as expected; KP varied from 0.299 to 0.045 for supercoiled plasmids of 3.0 to 17.0 kbp. The partition coefficient also increased with increasing ionic strength due to the compaction of the DNA associated with the shielding of the intramolecular electrostatic interactions. For any plasmid size, the supercoiled isoform had the highest KP followed by the open-circular and then the linear isoform, consistent with independent estimates of the plasmid radius of gyration as determined by static light scattering. The experimental data were analyzed using available theoretical models for the partitioning of linear and cyclic polymer chains in well-defined pore geometries. These results provide important insights into the behavior of different plasmid isoforms in size exclusion chromatography.  相似文献   

6.
Herein, we report on the in vitro change of DNA conformation of plasmids bound to a 3-aminopropyl-modified mica surface and monitoring the events by atomic force microscopy (AFM) imaging under near physiological conditions. In our study, we used an intercalating drug, chloroquine, which is known to decrease the twist of the double helix and thus altered the conformation of the whole DNA. During our experiments, a chloroquine solution was added while imaging a few highly condensed plasmid nanoparticles in solution. AFM images recorded after the drug addition clearly show a time-resolved relaxation of these bionanoparticles into a mixture of loose DNA strands.  相似文献   

7.
The use of histidine-agarose chromatography in the purification of supercoiled (sc) plasmid DNA (pDNA) from Escherichia coli lysates has been reported recently. In the current work we describe a set of breakthrough experiments which were designed to study the effect of parameters such as flow-rate, temperature, concentration and conformation on the dynamic binding capacity of pDNA to the histidine support. One of the most striking results shows that the dynamic binding capacity for sc pDNA decreases linearly from 250.8 to 192.0 microg sc pDNA/mL when the temperature is varied from 5 to 24 degrees C. This behaviour was attributed to temperature-induced, pre-denaturation conformational changes which promote the removal of negative superhelical turns in sc pDNA molecules and decrease the interaction of DNA bases with the histidine ligands. The capacity for sc pDNA was highly improved when using feeds with higher pDNA concentrations, a phenomenon which was attributed to the fact that pDNA molecules in more concentrated solutions are significantly compressed. A maximum capacity of 530.0 microg pDNA/mL gel was obtained when using a 125 microg/mL pDNA feed at 1 mL/min and 5 degrees C, a figure which is comparable to the plasmid capacity values published for other chromatographic supports. Finally, a more than 2-fold increase in capacity was obtained when changing from open circular to sc pDNA solutions. Overall, the results obtained provide valuable information for the future development and implementation of histidine chromatography in the process scale purification of pDNA.  相似文献   

8.
Adsorptive membranes were investigated for the downstream processing of plasmid DNA by quantifying both separation efficiencies and adsorption uptake with the anion-exchange membranes. Separation efficiencies of the 10-ml Mustang-Q were measured using pulses of 6.1-kilo base pair plasmid DNA and lysozyme tracers, and comparing the responses for both conventional and reverse-flow operation. The plasmid exhibited nearly 200 plates/cm, almost as high efficiency as the protein despite the large difference in size. This behavior contrasts strongly with typical behavior for spherical porous particle packings, which predicted large decreases in efficiency with increases in tracer size. Batch adsorption isotherms for the 6.1-kilo base pair plasmid on small sheets of anion-exchange membranes at various ionic strengths showed high capacities for very large biomolecules. The maximum binding capacity for the membrane unit was calculated as 10 mg plasmid/ml, an order of magnitude greater than typical values reported for porous beads.  相似文献   

9.
A computational model based on the molecular dynamics (MD) simulation for the hole transport in DNA has been developed and applied to study hole current in DNA strands consisting of different numbers of GC pairs. The approach is based on the hopping mechanism which is thermally activated. The calculations show that the hole hopping intensifies with the temperature and the transport rate increases in agreement with the experimental evidence. It is also determined that the degree of structural ordering in the DNA strand enhances the hole conductivity and reasons are provided why this may occur.  相似文献   

10.
Monte Carlo simulations are performed to determine the anisotropy of the electric polarizability of a model DNA fragment in aqueous salt solution. By taking into consideration the participation of coions in the electroneutrality condition, at every simulation step, we obtain a list of counterions constituting the net charge arranged in increasing order of their distance from the DNA and calculate the contribution to the dipole moment from the first n counterions in the list. We define a partial polarizability tensor due to these n counterions to understand the origin of the polarizability in close relation to the solution structure. The ionic distributions are described by the counterion condensation theory. Characteristic features of the electric properties of polyelectrolytes are reproduced. The anisotropy of the electric polarizability Deltaalpha of DNA decreases with the addition of salt, yielding values comparable to experiment. The effect of electrophoretic motion of the polyion is examined by estimating its upper limit.  相似文献   

11.
Electric transport characteristics (conductivity, specific surface conductance, and transport numbers of counterions) for nano-and ultraporous glass membranes with pore radii of 1.3–160 nm are studied and compared for chloride solutions containing single-, double-, and triple-charged cations.  相似文献   

12.
Expanding the chemical diversity of metal complexes provides a robust platform to generate functional bioactive reagents. To access an excellent repository of metal-based compounds for probe/drug discovery, we capitalized on the rich chemistry of gold to create organometallic gold(iii) compounds by ligand tuning. We obtained novel organogold(iii) compounds bearing a 1,2-bis(diphenylphosphino)benzene ligand, providing structural diversity with optimal physiological stability. Biological evaluation of the lead compound AuPhos-89 demonstrates mitochondrial complex I-mediated alteration of the mitochondrial electron transport chain (ETC) to drive respiration and diminish cellular energy in the form of adenosine triphosphate (ATP). Mechanism-of-action efforts, RNA-Seq, quantitative proteomics, and NCI-60 screening reveal a highly potent anticancer agent that modulates mitochondrial ETC. AuPhos-89 inhibits the tumor growth of metastatic triple negative breast cancer and represents a new strategy to study the modulation of mitochondrial respiration for the treatment of aggressive cancer and other disease states where mitochondria play a pivotal role in the pathobiology.

Expanding the chemical diversity of metal complexes provides a robust platform to generate functional bioactive reagents.  相似文献   

13.
Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cell-mediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.  相似文献   

14.
The adsorption of plasmid DNA onto two different types of ceramic hydroxyapatite beads with a particle diameter of 20 μm, namely Ceramic Hydroxyapatite Type II and the Type III, which is not commercially available, were investigated. Type II and the Type III have a pore diameter of 80 and 240 nm, respectively. Equilibrium and dynamic binding capacity for a 4.9 kbp model plasmid on Ceramic Hydroxyapatite Type II and Type III were enhanced by addition of NaCl to the adsorption buffer. This result indicates that the adsorption mechanism cannot be solely explained by electrostatic interaction. The affinities of plasmid DNA for Ceramic Hydroxyapatite Type II (with a K(D) of ≈0.005 mg/mL) and to Hydroxyapatite Type III (with a K(D) of ≈0.045 mg/mL) were not affected by NaCl, whereas the binding capacity was. This observation corroborates the assumption that a change of the shape of the plasmid molecule is affected and could be the reason for increased binding capacity with salt. The maximal binding capacity shows that at least a part of the CHT II bead must be accessible for the plasmid, whereas CHT III can be saturated with the plasmid. In both cases, an extremely hindered transport takes place.  相似文献   

15.
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.  相似文献   

16.
Anion exchange chromatography is the most popular chromatographic method for plasmid separation.POROS R1 50 is a perfusio n chro mato graphic suppo rt w hich is a reversed phase matrix and is an alternative to co nventio nal o nes due to its mass transfer pro perties.The adso rptio n and elutio n o f the pIDKE2 plasmid o nto reversed phase POROS R1 50 w as studied.Langmuir iso therm mo del w as adjusted in o rder to get the max imum adso rptio n capacity and the disso ciatio n co nstant fo r POROS R1 50-plasmid DNA(pDNA) system.Breakthro ugh curves w ere o btained fo r vo lumetric flo w s betw een 0.69-3.33 mL/min,given dynamic capacity up to 2.3 times higher than tho se repo rted fo r io nic ex change matrix used during the purificatio n pro cess o f plasmids w ith similar size to that o f pIDKE2.The efficiency w as less than 45% fo r the flo w co nditio ns and initial co ncentratio n studied,w hich means that the suppo rt w ill no t be o perated under saturatio n circumstances.  相似文献   

17.
Given the success of the polaron model based on solvation in accounting for the width of a hole polaron on an all-adenine (A) sequence on DNA, we extend the calculations to other sequences. We find excellent agreement with the free energy differences measured by Lewis et al. (J. Am. Chem. Soc. 2000, 122, 12037-12038) between a guanine (G) cation and a pair of bases, GG, or a triple of bases, GGG, in all cases surrounded by As, by treating AGGA and AGGGA as solvated polarons. There is additional support for hole polaron formation in DNA from experiments in which oxidative damage due to injected holes is investigated in sequences involving Gs and As. Theory and comparison with transport measurements on repeated sequences involving multiple thymines (Ts) or combinations such as ATs or GCs, where C is cytosine, led to the suggestion that the basic sequences in these cases must be polarons whose wave functions have substantial amplitudes on both chains in a duplex. The size of an electron polaron in DNA is predicted to be similar to that of a hole polaron, approximately 4 or 5 bases. Although experiments have shown that polaron hopping is the dominant mode of charge transport in DNA with repeated sequences such as AGGA, further investigations, particularly of temperature dependence of site energies and transfer integrals, are needed to determine to what extent hole transport takes place by polaron hopping for arbitrary DNA sequences.  相似文献   

18.
Green fluorescent protein(GFP) plasmid was caged by 8-bromo-7-hydroxyquinolinyl chromophore(BHQ) for controlling its expression with exact spatiotemporal resolution.In vitro and in vivo experiments clearly verified that,comparing with Bhc caging, the expression level of caged GFP plasmid was dramatically decreased and then efficiently restored after subsequent photolysis.  相似文献   

19.
The use of plasmid DNA in gene therapy and genetic vaccination has increased the need for scalable and sustainable production processes. One key challenge for bioprocess engineering is the separation of plasmid DNA from structurally related impurities. Affinity purification procedures allow a highly selective capturing of the target molecule. In this paper, we present the isolation of a his-tagged lac repressor, its non-covalent immobilisation to different matrices and binding of DNA, thus enabling us to screen for combinations of ligands and stationary phases by using a building block principle.  相似文献   

20.
In the present study, the electrophoretic behavior of linear, supercoiled and nicked circular plasmid DNA in the presence of various intercalating dyes was characterized using pGL3 plasmid DNA as a model. The enzymatic digestion of pGL3 plasmid DNA with HindIIIwas monitored by capillary electrophoresis coupled with laser-induced fluorescence detection (CE-LIF). Nicked circular plasmid DNA was found to be relatively sensitive to enzymes, and was almost digested into the linear conformer after 10-min incubation, indicating that nicked circular plasmid DNA has little chance of targeting and entering the cell nucleus. Partly digested plasmid DNA containing only linear and supercoiled conformers can be used as a standard to confirm the migration order of plasmid DNA. In methylcellulose (MC) solution with YO-PRO-1 or YOYO-1, linear plasmid DNA eluted first, followed by supercoiled and nicked plasmid DNA, and nicked plasmid DNA eluted as a broad peak. With SYBR Green 1, nicked plasmid DNA eluted first as three sharp peaks, followed by linear and supercoiled plasmid DNA. The nuclear plasmid DNA from two transfected cell lines was successfully analyzed using the present procedure. Similar results were obtained with an analysis time of seconds using microchip electrophoresis with laser-induced fluorescence detection (mu-CE-LIF). To our knowledge, these results represent the first reported analysis of nuclear plasmid DNA from transfection cells by CE-LIF or mu-CE-LIF without pre-preparation, suggesting that the present procedure is a promising alternative method for evaluating transfection efficiency of DNA delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号