首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conjecture that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT‐edge‐connected graph such that |E(T)| divides |E(G)|, then the edges of G can be divided into parts, each of which is isomorphic to T. We prove that for T = K1,3 (the claw), this holds if and only if there exists a (smallest) natural number kt such that every kt‐edge‐connected graph has an orientation for which the indegree of each vertex equals its outdegree modulo 3. Tutte's 3‐flow conjecture says that kt = 4. We prove the weaker statement that every 4$\lceil$ log n$\rceil$ ‐edge‐connected graph with n vertices has an edge‐decomposition into claws provided its number of edges is divisible by 3. We also prove that every triangulation of a surface has an edge‐decomposition into claws. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 135–146, 2006  相似文献   

2.
In 1985, Alon and Tarsi conjectured that the length of a shortest cycle cover of a bridgeless graph H is at most 7/5 |E(H|). The conjecture is still open. Let G be a 2-edge-connected graph embedded with face-width k on the non-spherical orientable surface Sg. We give an upper bound on the length of a cycle cover of G. In particular, if g = 1 and k ≥ 48, or g = 2 and k ≥ 427, or g ≥ 3 and k ≥ 288(4g - 1), then the upper bound is 7/5 |E(G|), which means that Alon and Tarsi’s conjecture holds for such a graph.  相似文献   

3.
Bárat and the present author conjectured that, for each tree T  , there exists a natural number kTkT such that the following holds: If G   is a kTkT-edge-connected graph such that |E(T)||E(T)| divides |E(G)||E(G)|, then G has a T-decomposition, that is, a decomposition of the edge set into trees each of which is isomorphic to T  . The conjecture has been verified for infinitely many paths and for each star. In this paper we verify the conjecture for an infinite family of trees that are neither paths nor stars, namely all the bistars S(k,k+1)S(k,k+1).  相似文献   

4.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph G is related to the edge clique cover number θ E (G) of the graph G via θ E (G) ? |V(G)| + 2 ≤ k(G) ≤ θ E (G). We first show that for any positive integer m satisfying 2 ≤ m ≤ |V(G)|, there exists a graph G with k(G) = θ E (G) ? |V(G)| + m and characterize a graph G satisfying k(G) = θ E (G). We then focus on what we call competitively tight graphs G which satisfy the lower bound, i.e., k(G) = θ E (G) ? |V(G)| + 2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.  相似文献   

5.
For a graph G(V, E), if a proper k-edge coloring ƒ is satisfied with C(u) ≠ C(v) for uvE(G), where C(u) = {ƒ(uv) | uv ∈ E}, then ƒ is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC, and χas(G) = min{k | k-ASEC of G} is called the adjacent strong edge chromatic number of G. In this paper, we discuss some properties of χ′as(G), and obtain the χ′as(G) of some special graphs and present a conjecture: if G are graphs whose order of each component is at least six, then χas(G) ≤ Δ(G) + 2, where Δ(G) is the maximum degree of G.  相似文献   

6.
Let G=(V,E) be an undirected graph with a node set V and an arc set E. G has k pairwise disjoint subsets T1,T2,…,Tk of nodes, called resource sets, where |Ti| is even for each i. The partition problem with k resource sets asks to find a partition V1 and V2 of the node set V such that the graphs induced by V1 and V2 are both connected and |V1Ti|=|V2Ti|=|Ti|/2 holds for each i=1,2,…,k. The problem of testing whether such a bisection exists is known to be NP-hard even in the case of k=1. On the other hand, it is known that if G is (k+1)-connected for k=1,2, then a bisection exists for any given resource sets, and it has been conjectured that for k?3, a (k+1)-connected graph admits a bisection. In this paper, we show that for k=3, the conjecture does not hold, while if G is 4-connected and has K4 as its subgraph, then a bisection exists and it can be found in O(|V|3log|V|) time. Moreover, we show that for an arc-version of the problem, the (k+1)-edge-connectivity suffices for k=1,2,3.  相似文献   

7.
Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, and (2) for any i, j = 1, 2,… k, we have ||Ei| |Ej|| ≤ 1, where Ei = {e|e ∈ E(G) and f(e) = i}. χáve (G) = min{k| there exists a k-AVEEC of G} is called the adjacent vertex-distinguishing equitable edge chromatic number of G. In this paper, we obtain the χáve (G) of some special graphs and present a conjecture.  相似文献   

8.
Let G be a (k+m)-connected graph and F be a linear forest in G such that |E(F)|=m and F has at most k-2 components of order 1, where k?2 and m?0. In this paper, we prove that if every independent set S of G with |S|=k+1 contains two vertices whose degree sum is at least d, then G has a cycle C of length at least min{d-m,|V(G)|} which contains all the vertices and edges of F.  相似文献   

9.
Fan [G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002) 187-202] proved that if G is a graph with minimum degree δ(G)≥3k for any positive integer k, then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if δ(G)≥3k+1, then |E(Ck)|−|E(Ck−1)|=2. In this paper, we generalize Fan’s result, and show that if we let G be a graph with minimum degree δ(G)≥3, for any positive integer k (if k≥2, then δ(G)≥4), if dG(u)+dG(v)≥6k−1 for every pair of adjacent vertices u,vV(G), then G contains k+1 cycles C0,C1,…,Ck such that k+1<|E(C0)|<|E(C1)|<?<|E(Ck)|, |E(Ci)−E(Ci−1)|=2, 1≤ik−1, and 1≤|E(Ck)|−|E(Ck−1)|≤2, and furthermore, if dG(u)+dG(v)≥6k+1, then |E(Ck)|−|E(Ck−1)|=2.  相似文献   

10.
Let G = (V, E) be a connected graph. The hamiltonian index h(G) (Hamilton-connected index hc(G)) of G is the least nonnegative integer k for which the iterated line graph L k (G) is hamiltonian (Hamilton-connected). In this paper we show the following. (a) If |V(G)| ≥ k + 1 ≥ 4, then in G k , for any pair of distinct vertices {u, v}, there exists k internally disjoint (u, v)-paths that contains all vertices of G; (b) for a tree Th(T) ≤ hc(T) ≤ h(T) + 1, and for a unicyclic graph G,  h(G) ≤ hc(G) ≤ max{h(G) + 1, k′ + 1}, where k′ is the length of a longest path with all vertices on the cycle such that the two ends of it are of degree at least 3 and all internal vertices are of degree 2; (c) we also characterize the trees and unicyclic graphs G for which hc(G) = h(G) + 1.  相似文献   

11.
P. Horak 《Discrete Mathematics》2008,308(19):4414-4418
The purpose of this paper is to initiate study of the following problem: Let G be a graph, and k?1. Determine the minimum number s of trees T1,…,Ts, Δ(Ti)?k,i=1,…,s, covering all vertices of G. We conjecture: Let G be a connected graph, and k?2. Then the vertices of G can be covered by edge-disjoint trees of maximum degree ?k. As a support for the conjecture we prove the statement for some values of δ and k.  相似文献   

12.
Let k be a perfect field with cohomological dimension 2. Serre's conjecture II claims that the Galois cohomology set H 1(k,G) is trivial for any simply connected semi-simple algebraic G/k and this conjecture is known for groups of type 1 A n after Merkurjev–Suslin and for classical groups and groups of type F 4 and G 2 after Bayer–Parimala. For any maximal torus T of G/k, we study the map H 1(k, T) H 1(k, G) using an induction process on the type of the groups, and it yields conjecture II for all quasi-split simply connected absolutely almost k-simple groups with type distinct from E 8. We also have partial results for E 8 and for some twisted forms of simply connected quasi-split groups. In particular, this method gives a new proof of Hasse principle for quasi-split groups over number fields including the E 8-case, which is based on the Galois cohomology of maximal tori of such groups.  相似文献   

13.
The distance graph G(D) has the set of integers as vertices and two vertices are adjacent in G(D) if their difference is contained in the set DZ. A conjecture of Zhu states that if the chromatic number of G(D) achieves its maximum value |D|+1 then the graph has a triangle. The conjecture is proven to be true if |D|?3. We prove that the chromatic number of a distance graph with D={a,b,c,d} is five only if either D={1,2,3,4k} or D={a,b,a+b,b-a}. This confirms a stronger version of Zhu's conjecture for |D|=4, namely, if the chromatic number achieves its maximum value then the graph contains K4.  相似文献   

14.
It was conjectured that for each simple graph G=(V,E) with n=|V(G)| vertices and m=|E(G)| edges, it holds M2(G)/mM1(G)/n, where M1 and M2 are the first and second Zagreb indices. Hansen and Vuki?evi? proved that it is true for all chemical graphs and does not hold in general. Also the conjecture was proved for all trees, unicyclic graphs, and all bicyclic graphs except one class. In this paper, we show that for every positive integer k, there exists a connected graph such that mn=k and the conjecture does not hold. Moreover, by introducing some transformations, we show that M2/(m−1)>M1/n for all bicyclic graphs and it does not hold for general graphs. Using these transformations we give new and shorter proofs of some known results.  相似文献   

15.
In this paper we show that the entire graph of a bridgeless connected plane graph is hamiltonian, and that the entire graph of a plane block is hamiltonian connected and vertex pancyclic. In addition, we show that in any block G which is not a circuit, given a vertex v of G and a circuit k of G, there is a path p, suspended in G, such that p is a path in k of length at least 1 and G ? E(p) ? V0(G ? E(p)) is a block which includes v.  相似文献   

16.
The theory of vertex-disjoint cycles and 2-factors of graphs is the extension and generation of the well-known Hamiltonian cycles theory and it has important applications in network communication. In this paper we first prove the following result. Let G=(V 1,V 2;E) be a bipartite graph with |V 1|=|V 2|=n such that n≥2k+1, where k≥1 is an integer. If d(x)+d(y)≥?(4n+2k?1)/3? for each pair of nonadjacent vertices x and y of G with xV 1 and yV 2, then, for any k independent edges e 1,…,e k of G, G contains k vertex-disjoint quadrilaterals C 1,…,C k such that e i E(C i ) for each i∈{1,…,k}. We further show that the degree condition above is sharp. If |V 1|=|V 2|=2k, we give degree conditions that G has a 2-factor with k vertex-disjoint quadrilaterals C 1,…,C k containing specified edges of G.  相似文献   

17.
We propose a conjecture: for each integer k ≥ 2, there exists N(k) such that if G is a graph of order nN(k) and d(x) + d(y) ≥ n + 2k - 2 for each pair of non-adjacent vertices x and y of G, then for any k independent edges e1, …, ek of G, there exist k vertex-disjoint cycles C1, …, Ck in G such that eiE(Ci) for all i ∈ {1, …, k} and V(C1 ∪ ···∪ Ck) = V(G). If this conjecture is true, the condition on the degrees of G is sharp. We prove this conjecture for the case k = 2 in the paper. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 105–109, 1997  相似文献   

18.
On 2-factors with cycles containing specified edges in a bipartite graph   总被引:1,自引:0,他引:1  
Let k≥1 be an integer and G=(V1,V2;E) a bipartite graph with |V1|=|V2|=n such that n≥2k+2. In this paper it has been proved that if for each pair of nonadjacent vertices xV1 and yV2, , then for any k independent edges e1,…,ek of G, G has a 2-factor with k+1 cycles C1,…,Ck+1 such that eiE(Ci) and |V(Ci)|=4 for each i∈{1,…,k}. We shall also show that the conditions in this paper are sharp.  相似文献   

19.
A k-containerC(u,v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u,v) of G is a k*-container if it contains all vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. The spanning connectivity of G, κ*(G), is defined to be the largest integer k such that G is w*-connected for all 1?w?k if G is a 1*-connected graph. In this paper, we prove that κ*(G)?2δ(G)-n(G)+2 if (n(G)/2)+1?δ(G)?n(G)-2. Furthermore, we prove that κ*(G-T)?2δ(G)-n(G)+2-|T| if T is a vertex subset with |T|?2δ(G)-n(G)-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号