首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
To understand and characterize non-dimer DNA damage and cytotoxicity induced by ultraviolet-B light (UV-B, 290-320 nm), an alkaline elution technique for analysis of DNA damage was used on Chinese hamster V-79 cells. Ultraviolet-B exposure produced a dose-dependent induction of DNA single strand breaks and DNA-protein crosslinks; however, there was an absence of DNA-DNA interstrand crosslinks. Neither of these types of DNA damage were repaired within a a 24 h incubation of the cells following a single UV-B exposure; rather the damage increased. Using a colony forming assay, we found that UV-B exposure resulted in an increase of cytotoxicity in a dose-dependent fashion. In addition, UV-B exposure inhibited DNA and RNA synthesis. The role of non-dimer DNA damage in the cytotoxicity induced by UV-B is discussed.  相似文献   

2.
Exponentially growing cells cultured in medium containing bromodeoxyuridine, then exposed to UVA light in the presence of the dye Hoechst 33258, show significant levels of DNA strand breaks and base damage. This dye–bromodeoxyuridine–UVA photolysis treatment is markedly cytotoxic. We now demonstrate that exposure of cells to the agents used in photolysis leads directly to the formation of chromosome aberrations. Furthermore, we demonstrate that this photochemical treatment induces delayed chromosomal instability in clonal populations derived from single progenitor cells surviving photolysis. These results suggest that photolysis-induced DNA damage leads to chromosome rearrangements that could account for the observed cytotoxicity. Furthermore, in those cells surviving photolysis, the delayed effects of this treatment can be observed several generations after exposure and are manifested as compromised genomic integrity.  相似文献   

3.
The effects of vitamin E supplementation were evaluated in cultured human normal fibroblasts exposed to ultraviolet A radiation (320-380 nm) (UVA). Cells were incubated in medium containing alpha-tocopherol, alpha-tocopherol acetate or the synthetic analog Trolox for 24 h prior to UVA exposure. DNA damage in the form of frank breaks and alkali-labile sites, collectively termed single-strand breaks (SSB), was assayed by the technique of single cell gel electrophoresis (comet assay), immediately following irradiation or after different repair periods. The generation of hydrogen peroxide (H2O2) and superoxide ion (O2.-) was measured by flow cytometry through the oxidation of indicators into fluorescent dyes. It was observed that pretreatment of cells with any form of vitamin E resulted in an increased susceptibility to the photoinduction of DNA SSB and in a longer persistence of damage, whereas no significant change was observed in the production of H2O2 and O2.- reactive oxygen species, compared to untreated controls. These findings indicate that in human normal fibroblasts, exogenously added vitamin E exerts a promoting activity on DNA damage upon UVA irradiation and might lead to increased cytotoxic and mutagenic risks.  相似文献   

4.
Reactive oxygen species (ROS) are involved in the oxidative damage of the cyanobacterium Anabaena sp. caused by UV-B (280-315 nm) radiation. UV-B-induced overproduction of ROS as well as the oxidative stress was detected in vivo by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Thiobarbituric acid reactive substances (TBARS) and fluorometric analysis of DNA unwinding (FADU) methods were adapted to measure lipid peroxidation and DNA strand breaks in Anabaena sp. Moderate UV-B radiation causes an increase of ROS production, enhanced lipid peroxidation and DNA strand breaks, yielding a significantly decreased survival. In contrast, the supplementation of UV-A in our work only showed a significant increase in total ROS levels and DNA strand breaks while no significant effect on lipid peroxidation, chlorophyll bleaching or survival was observed. The presence of ascorbic acid and N-acetyl-L-cysteine (NAC) reversed the oxidative stress and protected the organisms from chlorophyll bleaching and the damage of photosynthetic apparatus induced by UV-B significantly, resulting in a considerably higher survival rate. Ascorbic acid also exhibited a significant protective effect on lipid peroxidation and DNA strand breaks while NAC did not show a substantial effect. These results suggest that ascorbic acid exhibited significantly higher protective efficiency with respect to DNA strand breaks and survival than NAC while NAC appears to be especially effective in defending the photosynthetic apparatus from oxidative damage.  相似文献   

5.
Cyanobacteria must cope with the negative effects of ultraviolet B (280-315 nm) (UV-B) stress caused by their obligatory light requirement for photosynthesis. The adaptation of the cyanobacterium Anabaena sp. to moderate UV-B radiation has been observed after 2 weeks of irradiation, as indicated by decreased oxidative stress, decreased damage, recovered photosynthetic efficiency and increased survival. Oxidative stress in the form of UV-B-induced production of reactive oxygen species was measured in vivo with the oxidative stress-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. Photooxidative damage by UV-B radiation, including lipid peroxidation and DNA strand breakage, was determined by a modified method using thiobarbituric acid reactive substances and fluorometric analysis of DNA unwinding. Photosynthetic quantum yield was determined by pulse amplitude-modulated fluorometry. The results suggest that moderate UV-B radiation results in an evident oxidative stress, enhanced lipid peroxidation, increased DNA strand breaks, elevated chlorophyll bleaching as well as decreased photosynthetic efficiency and survival during the initial exposure. However, DNA strand breaks, photosynthetic parameters and chlorophyll bleaching returned to their unirradiated levels after 4-7 days of irradiation. Oxidative stress and lipid peroxidation appeared to respond later because decreases were observed after 7 days of radiation. The survival curve against irradiation time exhibited a close relationship with the changes in photosynthetic quantum yield and DNA damage, with little mortality after 4 days. Growth inhibition by UV-B radiation was observed during the first 7 days of radiation, whereas normal growth resumed even under UV-B stress thereafter. An efficient defense system was assumed to come into play to repair photosynthetic and DNA damage and induce the de novo synthesis of UV-sensitive proteins and lipids, allowing the organisms to adapt to UV-B stress successfully and survive as well as grow. No induction of mycosporine-like amino acids (MAA) was observed during the adaptation of Anabaena sp. to UV-B stress in our work. The adaptation of the cyanobacterium correlated with and could be caused by the oxidative stress and oxidative damage.  相似文献   

6.
Abstract— The biological activity of some benzopsoralen derivatives, prepared with the aim of obtaining new drugs for photochemotherapy, has been studied. The more interesting compounds are 4-hydroxy-methyl-4',5'-benzopsoralen and 4-hydroxymethyl-4',5'-tetrahydro-benzopsoralen, which were found to be active in the dark also: DNA and RNA synthesis were both inhibited in Ehrlich cells, even if in a partially reversible fashion, while protein synthesis remained unaffected. In Chinese hamster ovary cells cultured in vitro , the clonal growth was strongly inhibited by incubation in the dark with both drugs, while a number of chromosomal aberrations was observed in the fraction of growing cells. Using alkaline elution, DNA strand breaks were detected. In addition, in the presence of aphidicolin, a specific inhibitor of DNA polymerase, the clonal growing capacity was completely restored; in contrast, the number of DNA strand breaks remained unchanged. All these results suggest that DNA topoisomerases are probably the target of these two benzopsoralens. These compounds are also good sensitizers; by UV-A irradiation they have a good capacity to produce singlet oxygen, but they appeared to be unable to induce erythemas on guinea-pig skin. Under UV-A light, they induced a strong inhibition of DNA synthesis in Ehrlich cells. Thus, benzopsoralens appear to be capable of inducing strong antiproliferative effects by two different mechanisms, by UV-A irradiation and in the dark.  相似文献   

7.
The effects of ultraviolet radiation (UV-A: 320-400 nm and UV-B: 280-320 nm) and methyl viologen (MV) single or combined exposure, on the cell growth, viability and morphology of two strains of the unicellular flagellate Euglena gracilis, using the Z strain as a plant model and the achlorophyllous mutant SMZ strain as an animal model were investigated. Cell growth was not affected by MV only, whereas UV-A or UV-B single and combined exposure with MV inhibited the cell growth or decreased the viability. The SMZ strain had a higher number of abnormal cells than the Z strain after the third dose of UV-B was delivered simultaneously with MV. The abnormal cell number decreased when E. gracilis SMZ cells were preincubated with 100 microM rutin prior to the UV-B and MV exposure. There were higher abnormal cell numbers with groups exposed to UV rather than MV single exposure. Combined exposure to UV-B and 200 microM MV induced the highest levels of TBARS in both strains, and with the supplementation of rutin these high levels were suppressed. These results suggest that UV-A or UV-B irradiation alone or combined with MV cause considerable oxidative damage in E. gracilis cells, and rutin supplementation may suppress their adverse effects.  相似文献   

8.
DNA strand breaks are early intermediates of the repair of UVC-induced DNA damage, however, since they severely impair cellular activities, their presence should be limited in time. In this study, the effects of incomplete repair of UVC-induced DNA strand breaks are investigated on K562 cell growth and the induction of erythroid differentiation by addition of DMSO to the cell culture medium. The kinetics were followed after UV irradiation by single cell gel electrophoresis, and in total cell population by alkaline or neutral agarose gel electrophoresis. Shortly after exposure, an extensive fragmentation occurred in DNA; DNA double strand breaks were negatively correlated with recovery time for DNA integrity. DNA damage induced by UVC 9J/m2 rapidly triggered necrosis in a large fraction of irradiated K562 cells, and only 40% of treated cells resumed growth at a very low rate within 24h of culture. The addition of DMSO to the culture medium of cells 15min after UVC, when DNA strand break repair was not yet complete, produced apoptosis in >70% of surviving cells, as determined by TUNEL assay. Conversely, if DMSO was added when the resealing of DNA strand breaks was complete, surviving K562 cells retained full growth capacity, and their progeny underwent erythroid differentiation with normal levels of erythroid proteins, delta-aminolevulinic acid dehydrase and hemoglobin. This study shows that the extent of DNA strand break repair influences cell proliferation and the DMSO induced erythroid program, and the same UVC dose can have opposite effects depending on cellular status.  相似文献   

9.
DNA strand breaks and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutants were measured in parallel in photochemically treated (PCT) cells and compared at the same level of cell survival. Chinese hamster fibroblasts (V79 cells) were either incubated with the lipophilic dyes tetra(3—hydroxyphenyl)porphyrin (3THPP) and Photofrin II (PII), the anionic dye meso -tetra(4—sulfonatophenyl)porphine (TPPS4) or the cationic dye meso -tetra( N -methyl-4-pyridyl)porphine ( p -TMPyPH2 before light exposure. In the cells, the lipophilic dyes were localized in membranes, including the nuclear membrane, while the hydrophilic dyes were taken up primarily into spots in the cytoplasm. In addition, the hydrophilic TPPS4 was distributed homogeneously throughout the whole cytoplasm and nucleoplasm. According to the HPRT mutation test, the mutagenicity of light doses survived by 10% of the cells was a factor of six higher in the presence of 3THPP than of PII, whereas for X-rays it was a factor of three higher than for PCT with 3THPP. Light exposure in the presence of the hydrophilic dyes TPPS4 and p -TMPyPH2 was not significantly mutagenic. There was no correlation between the induced rates of HPRT mutants and of DNA strand breaks. Thus, TPPS4 was the most efficient sensitizer with regard to DNA strand breaks when compared at the same level of cell survival, followed by 3THPP, PII and p -TMPyPH2. Hence, the rate of DNA strand breaks cannot be used to predict the mutagenicity of PCT.  相似文献   

10.
Fluorometric analysis of DNA unwinding (FADU assay) was originally designed to detect X-ray-induced DNA damage in repair-proficient and repair-deficient mammalian cell lines. The method was modified and applied to detect DNA strand breaks in Chinese hamster ovary (CHO) cells exposed to ionizing radiation as well as to UV light. Exposed cells were allowed to repair damaged DNA by incubation for up to 1 h after exposure under standard growth conditions in the presence and in the absence of the DNA synthesis inhibitor aphidicolin. Thereafter, cell lysates were mixed with 0.15 M sodium hydroxide, and DNA unwinding took place at pH 12.1 for 30 min at 20 degrees C. The amount of DNA remaining double-stranded after alkaline reaction was detected by binding to the Hoechst 33258 dye (bisbenzimide) and measuring the fluorescence. After exposure to X-rays DNA strand breaks were observed in all cell lines immediately after exposure with subsequent restitution of high molecular weight DNA during postexposure incubation. In contrast, after UV exposure delayed production of DNA strand break was observed only in cell lines proficient for nucleotide excision repair of DNA photoproducts. Here strand break production was enhanced when the polymerization step was inhibited by adding the repair inhibitor aphidicolin during repair incubation. These results demonstrate that the FADU approach is suitable to distinguish between different DNA lesions (strand breaks versus base alterations) preferentially induced by different environmental radiations (X-rays versus UV) and to distinguish between the different biochemical processes during damage repair (incision versus polymerization and ligation).  相似文献   

11.
Abstract— UVA irradiation of human lymphocytes induces DNA strand breaks and a portion of these breaks are closed at a slower rate than X-ray induced DNA strand breaks and the strand breaks generated during repair of UVC induced DNA lesions. In addition, the yield of DNA strand breaks in lymphocytes pretreated with UVA radiation and given a subsequent exposure with UVC radiation is higher and shows a slower decrease with increasing repair time in comparison with the expected yield based on additivity between UVA and UVC induced DNA strand breaks. This indicates that UVA delays the closure of the intermediate strand breaks formed in the repair process of UVC induced DNA lesions.  相似文献   

12.
Abstract We have used alkaline elution to study DNA damage produced by the photosensitizer hematoporphyrin derivative (HPD) in cultured Chinese hamster cells. Dosimetry was performed by measuring fluence and calculating photon absorption by intracellular HPD. HPD photosensitization causes DNA strand breakage. These breaks are repaired by the cell, although their fractional rate of repair is smaller than that for X-ray induced strand breaks at equivalent levels of strand breakage. The combined DNA polymerase inhibitors cytosine arabinoside and hydroxyurea suppress the repair of HPD-photosensitized breaks more strongly than they suppress repair of X-ray induced breaks. Addition of novobiocin to the aforementioned inhibitors causes almost total suppression of photosensitized break repair. A nucleotide excision repair system with inhibitor susceptibility similar to that of the system which removes pyrimidine dimers thus does not act upon HPD-photosensitized damage. The repair rate and inhibitor sensitivity findings together suggest biologically important differences in the chemical nature of X-ray induced and HPD-photosensitized strand breaks. In addition to strand breaks, HPD photosensitization produces covalent DNA-protein crosslinks, some of which persist through at least 90 min incubation, but which are repaired within 180 min.  相似文献   

13.
UV-B effects on Antarctic Chlorella sp cells.   总被引:1,自引:0,他引:1  
Growth of Antarctic Chlorella sp cells was measured in cultures irradiated with 30 kJ m(-2) UV-B (280-320 nm). The specific growth rate immediately after the lag phase was 0.36+/-0.06 and 0.26+/-0.03 day(-1) for unirradiated cultures and cultures irradiated with UV-B, respectively, UV-B irradiation significantly decreased ascorbate content by 54.5%, and increased the ascorbyl radical content/ascorbate content ratio by 2.25-fold in algae cultures in log phase. UV-B exposure significantly decreased by 95, 62 and 71% the content of alpha-tocopherol, beta-carotene and total thiols, respectively, in cells in log phase of development. The cellular content of alpha-tocopherol, beta-carotene and total thiols was reduced by 78, 43 and 44%, respectively in stationary phase, as compared to the antioxidant content in the cells during log phase of development. UV-B exposure reduced the content of alpha-tocopherol and total thiols in stationary phase of development by 64 and 91%, respectively, as compared to unirradiated cells. The content of beta-carotene in stationary phase was not affected by UV-B exposure. The results presented here suggest that increased UV-B radiation was responsible for the development of oxidative stress conditions, assessed as the ascorbyl radical content/ascorbate content ratio, in Antarctic Chlorella sp cells. Moreover, a significant decrease in the content of both lipid and water soluble antioxidants might contribute to establish oxidative stress in the cells.  相似文献   

14.
DNA double strand breaks (DSBs) are amongst the most deleterious lesions induced within the cell following exposure to ionizing radiation. Mammalian cells repair these breaks predominantly via the nonhomologous end joining pathway which is active throughout the cell cycle and is error prone. The alternative pathway for repair of DSBs is homologous recombination (HR) which is error free and active during S- and G2/M-phases of the cell cycle. We have utilized near-infrared laser radiation to induce DNA damage in individual mammalian cells through multiphoton excitation processes to investigate the dynamics of single cell DNA damage processing. We have used immunofluorescent imaging of gamma-H2AX (a marker for DSBs) in mammalian cells and investigated the colocalization of this protein with ATM, p53 binding protein 1 and RAD51, an integral protein of the HR DNA repair pathway. We have observed persistent DSBs at later times postlaser irradiation which are indicative of DSBs arising at replication, presumably from UV photoproducts or clustered damage containing single strand breaks. Cell cycle studies have shown that in G1 cells, a significant fraction of multiphoton laser-induced prompt DSBs persists for > 4 h in addition to those induced at replication.  相似文献   

15.
The contribution of DNA strand breaks accumulating in the course of nucleotide excision repair to upregulation of the p53 tumor suppressor protein was investigated in human dermal fibroblast strains after treatment with 254 nm ultraviolet (UV) light. For this purpose, fibroblast cultures were exposed to UV and incubated for 3 h in the presence or absence of l-beta-D-arabinofuranosylcytosine (araC) and/or hydroxyurea (HU), and then assayed for DNA strand breakage and p53 protein levels. As expected from previous studies, incubation of normal and ataxia telangiectasia (AT) fibroblasts with araC and HU after UV irradiation resulted in an accumulation of DNA strand breaks. Such araC/HU-accumulated strand breaks (reflecting nonligated repair-incision events) following UV irradiation were not detected in xeroderma pigmentosum (XP) fibroblast strains belonging to complementation groups A and G. Western blot analysis revealed that normal fibroblasts exhibited little upregulation of p53 (approximately 1.2-fold) when incubated without araC after 5 J/m2 irradiation, but showed significant (three-fold) upregulation of p53 when incubated with araC after irradiation. AraC is known to inhibit nucleotide excision repair at both the damage removal and repair resynthesis steps. Therefore, the potentiation of UV-induced upregulation of p53 evoked by araC in normal cells may be a consequence of either persistent bulky DNA lesions or persistent incision-associated DNA strand breaks. To distinguish between these two possibilities, we determined p53 induction in AT fibroblasts (which do not upregulate p53 in response to DNA strand breakage) and in XP fibroblasts (which do not exhibit incision-associated breaks after UV irradiation). The p53 response after treatment with 5 J/m2 UV and incubation with araC was similar in AT, XPA, XPG and normal fibroblasts. In addition, exposure of XPA and XPG fibroblasts to UV (5, 10 or 20 J/m2) followed by incubation without araC resulted in a strong upregulation of p53. We further demonstrated that HU, an inhibitor of replicative DNA synthesis (but not of nucleotide excision repair), had no significant impact on p53 protein levels in UV irradiated and unirradiated human fibroblasts. We conclude that upregulation of p53 at early times after exposure of diploid human fibroblasts to UV light is triggered by persistent bulky DNA lesions, and that incision-associated DNA strand breaks accumulating in the course of nucleotide excision repair and breaks arising as a result of inhibition of DNA replication contribute little (if anything) to upregulation of p53.  相似文献   

16.
–The techniques of viscoelastometry and S1 nuclease digestion were applied to the analysis of DNA damage in rat 9L cells treated with the combination of 8-MOP (8-methoxysporalen) and near-UV light. Treatment of cells with near-UV light alone resulted in a decrease in the viscoelastic retardation time under both denaturing and nondenaturing conditons. Exposure of cells to 8-MOP alone yielded a maximum in the plot of retardation time vs dose under nondenaturing conditions, similar to that found with ionizing radition. This observation suggests that treatment with 8-MOP alone leads to DNA strand breaks. Viscoelastic analysis of cell lysates under denaturing conditions demonstrated that treatment of cells with 8-MOP and UV radiation led to substantial increases in both the viscoelastic retardation time and recoil, consistent with formation of DNA interstrand cross-links. Viscoelastic analysis of cell lysates under nondenaturing conditions showed that exposure to long wavelength UV light in the presence of 8-MOP produced a decrease in retardation time. This decrease reflects the combined effect of strand breaks and interstrand cross-links. Results from the S1 nuclease assay confirmed these observations and permitted quantitation of DNA damage arising from single-strand breaks and DNA interstrand crosslinks. The importance of including the effect of strand breaks in the quantitation of cross-link formation is discussed.  相似文献   

17.
Photoreactivity of UV-b damage in bacteriophage phi X174 DNA   总被引:3,自引:0,他引:3  
Abstract— The fraction of biological damage in isolated single-strand and double-strand forms of bac-teriophage DNA resulting from pyrimidine dimers following exposure to germicidal UV (254 nm) and UV-B (280-320. nm) radiation has been compared. Radiation from a Westinghouse FS-40 sunlamp filtered through a cellulose acetate sheet was used as the UV-B radiation source. Biological damage from pyrimidine dimers was determined by measuring the survival of the viral DNA with and without photoreactivation, an enzymatic process specific for repair of pyrimidine dimers. The same fraction of biological damage in the single strand and double–strand forms of φX174 DNA is repairable by photo-reactivation following exposures to germicidal UV and UV-B radiation.  相似文献   

18.
Chloroaluminum phthalocyanine (CAPC) was recently shown to photosensitize cell killing in culture and tumor destruction in vivo. Because this compound is potentially useful in the photodynamic therapy of cancer, its properties as a genotoxic agent were evaluated. Applying the technique of alkaline elution to study DNA integrity, it was found that CAPC could produce single-strand breaks in the DNA of Chinese hamster cells after exposure to white fluorescent light. At equicytotoxic doses, the number of DNA strand breaks produced by CAPC photosensitization was about three times lower than that induced by X-irradiation. During incubation in growth medium after exposure to CAPC-plus-fluorescent light, cells rejoined DNA strand breaks at a rate similar to that observed after X-irradiation. Resistance to 6-thioguanine (6-TG') or to ouabain (OUA') were used as end points of mutagenic potential. Following a treatment that caused -90% cell killing, there was a slight mutagenic effect, i.e. the frequencies were increased by -40% above the background or spontaneous mutations. However, this enhancement was not statistically significant. Taken together, the foregoing, plus an earlier observation that there is no variation in the sensitivity of cells to CAPC + light through the cell cycle, lead to the inferences that DNA damage does not play a major role in cell killing and that the mutagenic potential of this treatment is small.  相似文献   

19.
Abstract— Chloroaluminum phthalocyanine (CAPC) is an efficient photosensitizer for the inactivation of Chinese hamster V79 cells. In order to investigate possible molecular mechanisms in the photo-dynamic action of CAPC and visible light, the induction and repair rate of two classes of DNA lesions have been determined, i.e. DNA single-strand breaks and DNA-protein cross-links. In cells pretreated with 1 μ.M CAPC, a fluence of 12 kJ/m2 of red light (>600 nm) kills approximately 50% of the cells and induces 3 to 3.5 Gy-equivalents of single-strand breaks. The repair of these breaks was slower than the repair of single-strand breaks induced by -irradiation. The photodynamic action of CAPC also induces a large number of DNA-protein cross-links which, in contrast to -radiation-induced DNA-protein cross-links, do not appear to be repaired during 4 h of post-treatment incubation in fresh medium. These studies suggest that DNA may be an important target for the cytotoxicity of CAPC + red light.  相似文献   

20.
Abstract— Sets of G1, S, and G2 phase Xenopus cells were exposed to 15.0 Jm−2 UV and their ability to photoreactivate the induced cell killing (loss of colony forming ability) and chromosomal aberrations was determined as a function of time following the UV exposure. Most of the lesions induced in G1 cells that lead to cell death were converted to a non-photoreactivable state before the cells entered the S phase, while lesions leading to chromosomal aberrations were converted to a non-photoreactivable state as the cells entered the S phase. In S phase cells the UV-induced lesions leading to aberrations appeared to be converted to a non-photoreactivable state at a much faster rate than those leading to cell death. A significant fraction of the lesions induced in G2 cells, that lead to cell death, were converted to a non-photoreactivable state before the progeny of the exposed cells reached the next succeeding S phase. Few, if any, lesions were induced in G2 cells that were expressed as aberrations at the first mitosis following exposure. Some of the lesions induced in the G2 cells led to aberrations that were observable in the progeny that progressed to the second mitosis following exposure. These lesions were converted to a non-photoreactivable state as the progeny of the exposed G2 cells progressed through the first S phase following exposure. These results suggest that the intracellular mechanism which expresses photoreactivable UV-induced lesions as cell death is not identical to the mechanism which expresses such lesions as chromosomal aberrations, and the two mechanisms operate with different efficiencies in different phases of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号