首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Theoretical calculations were carried out to provide a framework for understanding the free radical oxidation of unsaturated lipids. The carbon[bond]hydrogen bond dissociation enthalpies (BDEs) of organic model compounds and oxidizable lipids (R[bond]H) and the carbon[bond]oxygen bond dissociation enthalpies of peroxyl radical intermediates (R[bond]OO*) have been calculated. The carbon[bond]hydrogen BDEs correlate with the rate constant for propagation of free radical autoxidation, and the carbon[bond]oxygen BDEs of peroxyl radicals correlate with rate constants for beta-fragmentation of these intermediates. Oxygen addition to intermediate carbon radicals apparently occurs preferentially at centers having the highest spin density. The calculated spin distribution therefore provides guidance about the partitioning of oxygen to delocalized carbon radicals. Where the C[bond]H BDEs are a function of the extent of conjugation in the parent lipid and the stability of the carbon radical derived therefrom, C[bond]OO* BDEs are also affected by hyperconjugation. This gives way to different rates of beta-fragmentation of peroxyl radicals formed from oxygen addition at different sites along the same delocalized radical. We have also studied by both theory and experiment the propensity for benzylic radicals to undergo oxygen addition at their ortho and para carbons which, combined, possess an equivalent unpaired electron spin density as the benzylic position itself. We find that the intermediate peroxyl radicals in these cases have negative C[bond]OO* BDEs and, thus, have rate constants for beta-fragmentation that exceed the diffusion-controlled limit for the reaction of a carbon-centered radical with oxygen.  相似文献   

2.
The attack of hydroxyl radicals on aromatic amino acid side chains, namely phenylalanine, tyrosine, and tryptophan, have been studied by using density functional theory. Two reaction mechanisms were considered: 1) Addition reactions onto the aromatic ring atoms and 2) hydrogen abstraction from all of the possible atoms on the side chains. The thermodynamics and kinetics of the attack of a maximum of two hydroxyl radicals were studied, considering the effect of different protein environments at two different dielectric values (4 and 80). The obtained theoretical results explain how the radical attacks take place and provide new insight into the reasons for the experimentally observed preferential mechanism. These results indicate that, even though the attack of the first .OH radical on an aliphatic C atom is energetically favored, the larger delocalization and concomitant stabilization that are obtained by attack on the aromatic side chain prevail. Thus, the obtained theoretical results are in agreement with the experimental evidence that the aromatic side chain is the main target for radical attack and show that the first .OH radical is added onto the aromatic ring, whereas a second radical abstracts a hydrogen atom from the same position to obtain the oxidized product. Moreover, the results indicate that the reaction can be favored in the buried region of the protein.  相似文献   

3.
The reactivity of 10 charged phenyl radicals toward several amino acids was examined in the gas phase in a dual-cell Fourier transform ion cyclotron resonance mass spectrometer. All radicals abstract a hydrogen atom from the amino acids, as expected. The most electrophilic radicals (with the greatest calculated vertical electron affinities (EA) at the radical site) also react with these amino acids via NH(2) abstraction (a nonradical nucleophilic addition-elimination reaction). Both the radical (hydrogen atom abstraction) and nonradical (NH(2) abstraction) reaction efficiencies were found to increase with the electrophilicity (EA) of the radical. However, NH(2) abstraction is more strongly influenced by EA. In contrast to an earlier report, the ionization energies of the amino acids do not appear to play a general reactivity-controlling role. Studies using several partially deuterium-labeled amino acids revealed that abstraction of a hydrogen atom from the α-carbon is only preferred for glycine; for the other amino acids, a hydrogen atom is preferentially abstracted from the side chain. The electrophilicity of the radicals does not appear to have a major influence on the site from which the hydrogen atom is abstracted. Hence, the regioselectivity of hydrogen atom abstraction appears to be independent of the structure of the radical but dependent on the structure of the amino acid. Surprisingly, abstraction of two hydrogen atoms was observed for the N-(3-nitro-5-dehydrophenyl)pyridinium radical, indicating that substituents on the radical not only influence the EA of the radical but also can be involved in the reaction. In disagreement with an earlier report, proline was found to display several unprecedented reaction pathways that likely do not proceed via a radical mechanism but rather by a nucleophilic addition-elimination mechanism. Both NH(2) and (15)NH(2) groups were abstracted from lysine labeled with (15)N on the side chain, indicating that NH(2) abstraction occurs both from the amino terminus and from the side chain. Quantum chemical calculations were employed to obtain insights into some of the reaction mechanisms.  相似文献   

4.
Bond dissociation enthalpies (BDEs) of a large series of molecules of the type A-B, where a series of radicals A ranging from strongly electrophilic to strongly nucleophilic are coupled with a series of 8 radicals (CH2OH, CH3, NF2, H, OCH3, OH, SH, and F) also ranging from electrophilic to nucleophilic, are computed and analyzed using chemical concepts emerging from density functional theory, more specifically the electrophilicities of the individual radical fragments A and B. It is shown that, when introducing the concept of relative radical electrophilicity, an (approximately) intrinsic radical stability scale can be developed, which is in good agreement with previously proposed stability scales. For 47 radicals, the intrinsic stability was estimated from computed BDEs of their combinations with the strongly nucleophilic hydroxymethyl radical, the neutral hydrogen atom, and the strongly electrophilic fluorine atom. Finally, the introduction of an extra term containing enhanced Pauling electronegativities in the model improves the agreement between the computed BDEs and the ones estimated from the model, resulting in a mean absolute deviation of 16.4 kJ mol(-1). This final model was also tested against 82 experimental values. In this case, a mean absolute deviation of 15.3 kJ mol(-1) was found. The obtained sequences for the radical stabilities are rationalized using computed spin densities for the radical systems.  相似文献   

5.
The recent study on the *OH-induced oxidation of calmodulin, a regulatory "calcium sensor" protein containing nine methionine (Met) residues, has supported the first experimental evidence in a protein for the formation of S therefore N three-electron bonded radical complexes involving the sulfur atom of a methionine residue and the amide groups in adjacent peptide bonds. To characterize reactions of oxidized methionine residues in proteins containing multiple methionine residues in more detail, in the current study, a small model cyclic dipeptide, c-(L-Met-L-Met), was oxidized by *OH radicals generated via pulse radiolysis and the ensuing reactive intermediates were monitored by time-resolved UV-vis spectroscopic and conductometric techniques. The picture that emerges from this investigation shows there is an efficient formation of the Met (S therefore N) radicals, in spite of the close proximity of two sulfur atoms, located in the side chains of methionine residues, and in spite of the close proximity of sulfur atoms and oxygen atoms, located in the peptide bonds. Moreover, it is shown, for the first time, that the formation of Met(S therefore N) radicals can proceed directly, via H+-transfer, with the involvement of hydrogen from the peptide bond to an intermediary hydroxysulfuranyl radical. Ultimately, the Met(S therefore N) radicals decayed via two different pH-dependent reaction pathways, (i) conversion into sulfur-sulfur, intramolecular, three-electron-bonded radical cations and (ii) a proposed hydrolytic cleavage of the protonated form of the intramolecular, three-electron-bonded radicals [Met(S therefore N)/Met(S therefore NH)+] followed by electron transfer and decarboxylation. Surprisingly, also alpha-(alkylthio)alkyl radicals enter the latter mechanism in a pH-dependent manner. Density functional theory computations were performed on the model c-(L-Met-Gly) and its radicals in order to obtain optimizations and energies to aid in the interpretation of the experiments on c-(L-Met-L-Met).  相似文献   

6.
In order to elucidate the site of radical attack on polypropylene and polystyrene, the abstractions of hydrogen atoms by t-butoxy radicals and phenyl radicals have been studied by using a spin trapping technique. The t-butoxy radical abstracted tertiary hydrogen atoms selectively from polypropylene, polystyrene and model compounds. On the other hand, the tertiary hydrogens in polypropylene and its model compounds were less reactive towards the phenyl radical than the secondary hydrogens within the same molecule and the secondary hydrogens in polystyrene were abstracted predominantly by the phenyl radical. The conformational effects on the reactivities of various hydrogens in polypropylene and model compounds were found to be similar.  相似文献   

7.
The sonolysis of argon-saturated neutral aqueous solutions of several amino acids and peptides was investigated by ESR and spin trapping. The water-soluble non-volatile spin trap, 3,5-dibromonitrosobenzene sulfonate, was found to be particularly useful for ESR and spin trapping investigations of sonochemical reactions. By comparison with analogous experiments in which hydroxyl radicals were generated by u.v.-photolysis of solutions containing hydrogen peroxide, the amino acid and peptide radicals produced by sonolysis could be identified. These observations can be explained by the reactions of hydrogen atoms and hydroxyl radicals which are the primary products of the sonolysis of water.  相似文献   

8.
The intramolecular reaction of cysteine thiyl radicals with peptide and protein alphaC-H bonds represents a potential mechanism for irreversible protein oxidation. Here, we have measured absolute rate constants for these reversible hydrogen transfer reactions by means of pulse radiolysis and laser flash photolysis of model peptides. For N-Ac-CysGly6 and N-Ac-CysGly2AspGly3, Cys thiyl radicals abstract hydrogen atoms from Gly with k(f) = (1.0-1.1 x 10(5) s(-1), generating carbon-centered radicals, while the reverse reaction proceeds with k(r) = (8.0-8.9) x 10(5) s(-1). The forward reaction shows a normal kinetic isotope effect of k(H)/k(D) = 6.9, while the reverse reaction shows a significantly higher normal kinetic isotope effect of 17.6, suggesting a contribution of tunneling. For N-Ac-CysAla2AspAla3, cysteine thiyl radicals abstract hydrogen atoms from Ala with k(f) = (0.9-1.0) x 10(4) s(-1), while the reverse reaction proceeds with k(r) = 1.0 x 10(5) s(-1). The order of reactivity, Gly > Ala, is in accord with previous studies on intermolecular reactions of thiyl radicals with these amino acids. The fact that k(f) < k(r) suggests some secondary structure of the model peptides, which prevents the adoption of extended conformations, for which calculations of homolytic bond dissociation energies would have predicted k(f) > k(r). Despite k(f) < k(r), model calculations show that intramolecular hydrogen abstraction by Cys thiyl radicals can lead to significant oxidation of other amino acids in the presence of physiologic oxygen concentrations.  相似文献   

9.
Free radical species are generally short-lived due to their high reactivity and thus direct measurement and identification are often impossible. In this study we used a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), to trap radical intermediates formed during the oxidation of isomeric dipeptides tyrosine-leucine (Tyr-Leu) and leucine-tyrosine (Leu-Tyr), induced by the hydroxyl radical. To investigate the influence of the amino acid position in the peptide chain on the oxidation and free radical generation, the spin adducts were characterized using LC-MS and MS(n) . We detected carbon and oxygen DMPO adducts and adducts bearing two DMPO, which were analyzed by MS(n) . Both alkoxyl and peroxyl radicals were identified. Radical intermediates were localized in Tyr during oxidation of Tyr-Leu, while radicals were identified in Leu and Tyr during oxidation of Leu-Tyr. DMPO adducts of acyl radical species formed from cleavage of the peptide backbone, promoted by the alkoxyl radical in α carbon of the N-terminal amino acid were observed. The results show that the amino acid position has an influence in the oxidation process, at least on small peptides, and that the α carbon of the N-terminal amino acid is more vulnerable to the attack of the electrophilic hydroxyl radical.  相似文献   

10.
The effects of hetero atoms within the substrate molecule and the number of available hydrogen atoms in the hydrogen abstraction reaction are considered. Chlorodifluoromethyl radicals are generated by the photolysis of 1,3-dichlorotetrafluoroacetone and the substrate molecules used are dimethyl ether, trimethylamine and tetramethylsilane. The Arrhenius parameters for the hydrogen abstraction reaction have been calculated and compared with those obtained using other radicals. The role of secondary radical decomposition is considered.  相似文献   

11.
Six substituted 5-pyrimidinols were synthesized, and the thermochemistry and kinetics of their reactions with free radicals were studied and compared to those of equivalently substituted phenols. To assess their potential as hydrogen-atom donors to free radicals, we measured their O-H bond dissociation enthalpies (BDEs) using the radical equilibration electron paramagnetic resonance technique. This revealed that the O-H BDEs in 5-pyrimidinols are, on average, about 2.5 kcal mol(-1) higher than those in equivalently substituted phenols. The results are in good agreement with theoretical predictions, and confirm that substituent effects on the O-H BDE of 5-pyrimidinol are essentially the same as those on the Obond;H BDE in phenol. The kinetics of the reactions of these compounds with peroxyl radicals has been studied by their inhibition of the AIBN-initiated autoxidation of styrene, and with alkyl and alkoxyl radicals by competition kinetics. Despite their larger O-H BDEs, 5-pyrimidinols appear to transfer their phenolic hydrogen-atom to peroxyl radicals as quickly as equivalently substituted phenols, while their reactivity toward alkyl radicals far exceeds that of the corresponding phenols. We suggest that this rate enhancement, which is large in the case of alkyl radical reactions, small in the case of peroxyl radical reactions, and nonexistent in the case of alkoxyl radical reactions, is due to polar effects in the transition states of these atom-transfer reactions. This hypothesis is supported by additional experimental and theoretical results. Despite this higher reactivity of 5-pyrimidinols towards radicals compared to phenols, electrochemical measurements indicate that they are more stable to one-electron oxidation than equivalently substituted phenols. For example, the 5-pyrimidinol analogues of 2,4,6-trimethylphenol and butylated hydroxytoluene (BHT) were found to have oxidation potentials approximately 400 mV higher than their phenolic counterparts, but reacted roughly one order of magnitude faster with alkyl radicals and at about the same rate with peroxyl radicals. The 5-pyrimidinol structure should, therefore, serve as a useful template for the rational design of novel air-stable radical scavengers and chain-breaking antioxidants that are more effective than phenols.  相似文献   

12.
Abstract— The effects of u.v.-irradiation at 254 nm upon lyophilized ribonuclease, lysozyme, insulin, and chymotrypsinogen have been investigated by electron spin resonance (ESR). enzymatic assay, and labeling of free radical sites with tritiated hydrogen sulfide (HST). The ESR signal of the irradiated protein diminishes on exposure to HST, and tritium becomes covalently bound to carbon. The distribution of tritium among the amino acids of each protein. studied as an indicator of the carbon free radical distribution, differs markedly from those observed previously to result from exposure to gamma radiation, electrical discharge. or hydrogen atoms. However, the earlier observation that the tritium distribution is influenced by protein conformation holds true as well for u.v.-irradiation. Moreover, the distributions of tritium among the amino acids of u.v.-irradiated proteins indicate a broad scattering of free radicals. Tyrosine and phenylalanine, residues that absorb light energy in the region of the wavelength employed, are not particularly important as radical carriers. Thus, for ribonuclease, these residues incorporated 3.8 and 1.5 per cent of the total tritium, but they absorb 51 and 12 per cent of the light, respectively. These results, together with the observed low recoveries of methionine, an amino acid that does not absorb at 254 nm, add weight to the concept that a migration of energy ensues after the initial absorption of light energy and that photolytic damage may thus be due to destruction of amino acids other than those initially absorbing the u.v.-radiation.  相似文献   

13.
Ab initio calculations have been used to design radical-resistant amino acid residues. Optimized structures of free and protected amino acids and their corresponding alpha-carbon-centered radicals were determined with B3-LYP/6-31G(d). Single-point RMP2/6-31G(d) calculations on these structures were then used to obtain radical stabilization energies, to examine the effect of steric repulsion between the side chains and amide carbonyl groups on the stability of alpha-carbon-centered peptide radicals. Relative to glycine, the destabilization for alanine and valine residues was found to be approximately 9 and 18 kJ mol(-1), respectively, which correlates with the reactivity of analogous amino acid residues in peptides toward hydrogen atom abstraction in conventional free radical reactions. To design amino acid residues that would resist radical reactions, strategies by which the steric effects could be magnified were considered. This resulted in the identification of tert-leucine and 3,3,3-trifluoroalanine as suitable molecules. With these amino acid residues, the destabilization of the alpha-carbon-centered radicals relative to that of glycine is increased substantially to approximately 36 and 41 kJ mol(-1), respectively. The theoretical predictions have been supported by experimental observations: a tert-leucine derivative was shown to be very slow to react with N-bromosuccinimide, while the corresponding trifluoroalanine derivative was found to be inert.  相似文献   

14.
The C-H bond dissociation enthalpies (BDEs) for the five- and six-membered ring alkanes, alkenes, and dienes were investigated and discussed in terms of conventional strain energies (SEs). New determinations are reported for cyclopentane and cyclohexane by time-resolved photoacoustic calorimetry and quantum chemistry methods. The C-H BDEs for the alkenes yielding the alkyl radicals cyclopenten-4-yl and cyclohexen-4-yl and the alpha-C-H BDE in cyclopentene were also calculated. The s-homodesmotic model was used to determine SEs for both the parent molecules and the radicals. When the appropriate s-homodesmotic model is chosen, the obtained SEs are in good agreement with the ones derived from group additivity schemes. The different BDEs in the title molecules are explained by the calculated SEs in the parent molecules and their radicals: (1) BDEs leading to alkyl radicals are ca. 10 kJ mol (-1) lower in cyclopentane and cyclopentene than in cyclohexane and cyclohexene, due to a smaller eclipsing strain in the five-membered radicals relative to the parent molecules (six-membered hydrocarbons and their radicals are essentially strain free). (2) C-H BDEs in cyclopentene and cyclohexene leading to the allyl radicals are similar because cyclopenten-3-yl has almost as much strain as its parent molecule, due to a synperiplanar configuration. (3) The C-H BDE in 1,3-cyclopentadiene is 27 kJ mol (-1) higher than in 1,4-cyclohexadiene due to the stabilizing effect of the conjugated double bond in 1,3-cyclopentadiene and not to a destabilization of the cyclopentadienyl radical. The chemical insight afforded by group additivity methods in choosing the correct model for SE estimation is highlighted.  相似文献   

15.
The N-H bond dissociation enthalpies (BDE's) of 40 anilines (pGC(6)H(4)NHY) from series 1 to 4 with alpha-Y and p-G substituents and the stability of related radicals (pGC(6)H(4)Ndot;Y) were studied using ab initio (MP2) and density functional methods (B3LYP) with large basis sets. The results show that both methods reproduce earlier experimental BDEs within 2-3 kcal/mol and satisfactorily predict the alpha and remote substituent effects on BDEs (DeltaBDEs), as they reproduced the experimental DeltaBDEs within less than 1 kcal/mol. Furthermore, the conventional radical stabilization enthalpy (RSE = - DeltaBDE) was found to be invalid to represent the trend of the radical stabilization because the molecule effect (ME) can contribute more to RSE than the radical effect (RE) for certain series (1 and 4). These radicals are in fact stabilized by electron-withdrawing groups (EWGs) but destabilized by electron-donating groups (EDGs), a phenomenon just opposite to the observed O-behavior of many other aromatic heteroatomic radicals studied so far. These radicals are thus assigned as a new radical class, Class counter-O (or O) according to Walter's terminology. Moreover, the excellent multi-parametric Hammett-type correlations indicated that the para substituent effects on BDEs originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. The atomic charge and spin population variations at a radical center due to p-G substitution were also found to correlate satisfactorily with REs. These results show that the spin delocalization effect should be explicitly considered in accounting for both DeltaBDEs and radical stabilization effects. Finally, an overall subsituent effect scale for radical stability has been proposed, and the overall substituent effect on the N-radicals was found to conform to the Capto-dative Principle.  相似文献   

16.
Damages induced by free radicals on human serum albumin (HSA), the most prominent protein in plasma, were investigated by Raman spectroscopy. HSA underwent oxidative and reductive radical stress. Gamma-irradiation was used to simulate the endogenous formation of reactive radical species such as hydrogen atoms (H), solvated electrons (eaq) and hydroxyl radicals (OH). Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and specific damages occurring at sensitive amino acid sites. In particular, the analysis of the S–S stretching region suggested the radical species caused modifications in the 17 disulphide bridges of HSA. The concomitant action of eaq and H atoms caused the formation of cyclic disulphide bridges, showing how cystine pairs act as efficient interceptors of reducing species, by direct scavenging and electron transfer reactions within the protein. This conclusion was further confirmed by the modifications visible in the Raman bands due to Phe and Tyr residues. As regards to protein folding, both oxidative and reductive radical stresses were able to cause a loss in α-helix content, although the latter remains the most abundant secondary structure component. β-turns motifs significantly increased as a consequence of the synergic action of eaq and H atoms, whereas a larger increase in the β-sheet content was found following the exposure to OH and/or H attack.  相似文献   

17.
烷烃中碳氢键离解能的估算及其应用   总被引:5,自引:0,他引:5  
曹晨忠  林原斌 《有机化学》2003,23(2):207-211
将烷烃中的C-H键看成氢原子H与烷基Ri相连接而成的Ri-H键,以烷基的 HOMO能级和氢原子的轨道能来关联Ri-H键的离解能BDE。研究表明,烷烃分子中 Ri-H键的离能BDE与烷基Ri的极化效应指数PEI(Ri)有良好的线性关系:BDE= c+dPEI(Ri)。所得方程具有良好的估算精度。烷基Ri极化效应指数PEI(Ri)在羟 基自由基与烷烃反应速度常数的定量相关中,也得到良好的应用。  相似文献   

18.
The hydrogen-abstracted radicals from the adenine-uracil (AU) base pair have been studied at the B3LYP/DZP++ level of theory. The A(N9)-U and A-U(N1) radicals, which correspond to hydrogen-atom abstraction at the adenine N9 and uracil N1 atoms, respectively, were predicted to be the two lowest-lying among the nine (AU-H) radicals studied in this study. The removal of the amino hydrogen of the adenine moiety that forms a hydrogen bond with the uracil O4 atom in the AU pair resulted in radical A(N6a)-U, which has the smallest base-pair dissociation energy, 5.9 kcal mol(-1). This radical is more likely to dissociate into the two isolated bases than to recover the hydrogen bond with the O4 atom through N6-H bond rotation along the C6-N6 bond. In general, the radicals generated by C-H bond breaking were higher in energy than those arising from N-H bond cleavage, because the unpaired electrons in the carbon-centered radicals were mainly localized on the carbon atom from which the hydrogen atom was removed. However, the highest-lying radical was found to arise from removal of the N3 hydrogen of uracil. The most remarkable structural feature of this radical is a very short C-H...O distance of 2.094 A, consistent with a substantial hydrogen bond. Although this radical lost the N1...H-N3 hydrogen bond between the two bases, its dissociation energy was predicted to be 12.9 kcal mol(-1), similar to that of the intact AU base pair. This is due to the transfer of electron density from the adenine N1 atom to the uracil N3 atom.  相似文献   

19.
Thiyl radicals are important intermediates in biological oxidative stress and enzymatic reactions, for example, the ribonucleotide reductases. On the basis of the homolytic bond dissociation energies (BDEs) only, the (alpha)C-H bonds of peptides and proteins would present suitable targets for hydrogen abstraction by thiyl radicals. However, additional parameters such as polar and conformational effects may control such hydrogen-transfer processes. To evaluate the potential of thiyl radicals for hydrogen abstraction from (alpha)C-H bonds, we provide the first absolute rate constants for these reactions with model peptides. Thiyl radicals react with (alpha)C-H bonds with rate constants between 1.7 x 10(3) M(-1) s(-1) (N-acetylproline amide) and 4 x 10(5) M(-1) s(-1) (sarcosine anhydride). However, the correlation of rate constants with BDEs is poor. Rather, these reactions may be controlled by conformation and dynamic flexibility around the (alpha)C-H bonds.  相似文献   

20.
Absolute rate constants and Arrhenius parameters for hydrogen abstractions (from carbon) by the t-butoxyl radical ((t) BuO.) are reported for several hydrocarbons and tertiary amines in solution. Combined with data already in the literature, an analysis of all the available data reveals that most hydrogen abstractions (from carbon) by (t) BuO. are entropy controlled (i.e., TdeltaS > deltaH, in solution at room temperature). For substrates with C-H bond dissociation energies (BDEs) > 92 kcal/mol, the activation energy for hydrogen abstraction decreases with decreasing BDE in accord with the Evans-Polanyi equation, with alpha approximately 0.3. For substrates with C-H BDEs in the range from 79 to 92 kcal/mol, the activation energy does not vary significantly with C-H BDE. The implications of these results in the context of the use of (t) BuO. as a chemical model for reactive oxygen-centered radicals is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号