首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isostructural tetranuclear lanthanide clusters of general formula [Ln(III)(4)(μ(3)-OH)(2)(o-van)(4)(O(2)CC(CH(3))(3))(4)(NO(3))(2)]·CH(2)Cl(2)·1.5H(2)O (Ln = Gd (1) and Dy (2)) (o-van = 3-methoxysalicylaldehydato anion) are reported. The metallic cores of both complexes display a planar 'butterfly' arrangement. Magnetic studies show that both are weakly coupled, with 2 displaying probable SMM behaviour.  相似文献   

2.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

3.
Factors that influence aggregation of lanthanide(III) (Ln(III)) ions to form polynuclear complexes were studied utilizing 1-aziridineethanol as a versatile source of macrocyclic and acyclic chelates. The facile ring-opening cyclo-oligomerization of 1-aziridineethanol leads to the formation of a series of polyaza cyclic oligomers (series A). In the presence of ethylenediamine, a competing N-alkylation reaction occurs to produce a new class of acyclic ligands (series B). The cyclo-oligomerization of four 1-aziridineethanol units is the most favorable process, leading to the formation of the 12-membered cyclen-type macrocycle, H(4)L(1) (1,4,7,10-tetrakis(2-hydroxyethyl)-1,4,7,10-tetraaza-cyclododecane). Ring-opening cyclo-oligomerization of 1-aziridineethanol in the presence of Ln(III) ions produces self-assembled mononuclear, tetranuclear, and pentanuclear compounds of H(4)L(1). In the presence of ethylenediamine, oligomerization of 1-aziridineethanol results in a dinuclear complex of an acyclic poly(amino-alkoxide) H(2)L(2). The coordinative unsaturation of (i) the alkoxy sites of [H(x)L(1)](x)(-)(4) (where x < 4) and (ii) Ln(III) ions in coordination numbers less than nine are critical factors in the formation of the polynuclear Ln(III) complexes. The identities of mononuclear, dinuclear, tetranuclear, and pentanuclear complexes herein discussed were established by X-ray crystallography.  相似文献   

4.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

5.
Two new nonanuclear lanthanide(III)-copper(II) complexes of macrocyclic oxamide [NaPr(2)(CuL)(6)(H(2)O)(6)](ClO(4))(6)Cl small middle dot6H(2)O (1) and [NaNd(2)(CuL)(6)(H(2)O)(6)](ClO(4))(6)Cl small middle dot8H(2)O (2) have been synthesized and characterized by means of elemental analysis, IR, and electronic spectra, where L = 1,4,8,11-tetraazacyclotradecanne-2,3-dione. The crystal structures of the two complexes have been determined. The structures of 1 and 2 consist of nonanuclear cations, perchlorate and chloride anions, and water molecules. In the two complexes, each copper(II) ion is connected to lanthanide(III) ion via the exo-cis oxygen atoms of the oxamido macrocyclic ligands, resulting in a tetranuclear subunit. The sodium ion links two tetranuclear subunits via the exo oxygen atoms of the oxamido macrocyclic ligands which results in a novel nonanuclear complex. The magnetic properties of the two complexes have been investigated. Preliminary treatment of the magnetic data by considering Ln(III) as free ion cannot give reasonable results, and accurate models involving both the orbital contribution and ligand field effect have to be developed.  相似文献   

6.
A set of three potentially bridging ligands containing two tridentate chelating N,N',O-donor (pyrazole-pyridine-amide) donors separated by an o, m, or p-phenylene spacer has been prepared and their coordination chemistry with lanthanide(III) ions investigated. Ligand L(1) (p-phenylene spacer) forms complexes with a 2:3 M:L ratio according to the proportions used in the reaction mixture; the Ln(2)(L(1))(3) complexes contain two 9-coordinate Ln(III) centres with all three bridging ligands spanning both metal ions, and have a cylindrical (non-helical) 'mesocate' architecture. The 1:1 complexes display a range of structural types depending on the conditions used, including a cyclic Ln(4)(L(1))(4) tetranuclear helicate, a Ln(2)(L(1))(2) dinuclear mesocate, and an infinite one-dimensional coordination polymer in which metal ions and bridging ligands alternate along the sequence. ESMS studies indicate that the 1:1 complexes form a mixture of oligonuclear species {Ln(L(1))}(n) in solution (n up to 5) which are likely to be cyclic helicates. In contrast, ligands L(2) and L(3) (with o- and m-phenylene spacers, respectively) generally form dinuclear Ln(2)L(2) Ln(III) complexes in which the two ligands may be arranged in a helical or non-helical architecture about the two metal ions. These complexes also contain an additional exogenous bidentate bridging ligand, either acetate or formate, which has arisen from hydrolysis of solvent molecules promoted by the Lewis-acidity of the Ln(III) ions. Luminescence studies on some of the Nd(III) complexes showed that excitation into ligand-centred pi-pi* transitions result in the characteristic near-infrared luminescence from Nd(III) at 1060 nm.  相似文献   

7.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(24):9780-9788
Hydrothermal reactions of lanthanide(III) salts with m-sulfophenylphosphonic acid (H3L1) and 1,10-phenanthroline (phen) or N,N'-piperazinebis(methylenephosphonic acid) (H4L2) afforded six novel lanthanide(III) sulfonate-phosphonates based on tetranuclear clusters, namely, [La(2)(L1)2(phen)4(H2O)].4.5H2O (1), [Ln2(L1)2(phen)2(H2O)5].3H2O (Ln = Nd, 2; Eu, 3; Er, 4), and [Ln2(HL1)(H2L2)2(H2O)4].8H2O (Ln = La, 5; Nd, 6). Compounds 2-4 contain discrete tetranuclear lanthanide(III) cluster units in which four lanthanide(III) ions are bridged by two tridentate and two tetradentate phosphonate groups. In compound 1, the tetranuclear clusters are further interconnected into a 1D chain through the coordination of the sulfonate groups. The structures of compounds 5 and 6 can be viewed as a 3D architecture based on a different types of tetranuclear cluster units that are interconnected by bridging H2L2 anions. In the tetranuclear clusters of compounds 5 and 6, the four lanthanide(III) centers are interconnected by only two HL1 ligands. Compound 2 is a luminescent material in the near-IR region, whereas compound 3 displays a strong luminescent emission band in the red-light region. Magnetic property measurements of compounds 2-4 and 6 indicate that there are strong antiferromagetic interactions between magnetic centers within the cluster units.  相似文献   

8.
Lanthanide hydroxide cluster complexes with acetylacetonate were synthesized by the hydrolysis of the corresponding hydrated lanthanide acetylacetonates in methanol in the presence of triethylamine. Polymeric lanthanide hydroxide complexes based on diamond-shaped dinuclear repeating units of [Ln(2)(CH(3)CO(3))(2)](4+) (Ln = La, Pr) and discrete complexes featuring a tetranuclear distorted cubane core of [Ln(4)(μ(3)-OH)(2)(μ(3)-OCH(3))(2)](8+) (Ln = Nd, Sm) and a nonanuclear core of [Ln(9)(μ(4)-O)(μ(4)-OH)(μ(3)-OH)(8)](16+) (Ln = Eu-Dy, Er, Yb) were obtained. The dependence of the cluster nuclearity on the identity of the lanthanide ion is rationalized in terms of the influences of a metal ion's Lewis acidity and the sterics about the Ln-OH unit on the kinetics of the assembly process that leads to a particular cluster.  相似文献   

9.
The reaction of the tetranuclear rare earth metal polyhydrido complexes {Cp'Ln(mu-H)2}4(THF) (Cp' = C5Me4SiMe3, Ln = Y (1a), Lu (1b)) with carbon monoxide (1 atm) yielded ethylene and the corresponding tetraoxo cubane complexes (Cp'Ln)4(mu3-O)4 (Ln = Y (5a), Lu (5b)). Stepwise formation of some key reaction intermediates, such as oxymethylene complexes (Cp'Ln)4(mu-OCH2)(mu-H)6(THF) (Ln = Y (2a), Lu (2b)), enolate species (Cp'Y)4(OCH=CH2)(mu-O)(mu-H)5(THF) (3), and dioxo complex (Cp'Y)4(mu3-O)2(mu-H)4(THF) (4), was confirmed. The molecular structures of 2a, 4, and 5b were determined by X-ray diffraction studies.  相似文献   

10.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

11.
The reaction of the lanthanide trichloride hexahydrates [LnCl(3).6H(2)O] (Ln = Yb, Lu) with two equivalents of benzoylferrocenoylmethane resulted in the tetranuclear lanthanide hydroxo clusters [Ln(4)(mu(3)-OH)(4)(FcacacPh)(8)] (Ln = Yb (1), Lu (2); FcacacPh = benzoylferrocenoylmethanide). Compounds 1 and 2 are made up of a distorted tetranuclear lanthanide Ln(4)O(4) cubane core consisting of four mu(3)-oxygen atoms while the eight FcacacPh ligands build up the peripheral part of the cluster. These compounds contain the maximum number of ferrocene units anchored to any molecular metal-heteroatom framework reported so far and for which the X-ray structures are known.  相似文献   

12.
The structures and magnetic properties of four isomorphous nonanuclear heterometallic complexes [Na(2){Mn(3)(III)(μ(3)-O(2-))}(2)Ln(III)(hmmp)(6)(O(2)CPh)(4)(N(3))(2)]OH·0.5 CH(3)CN·1.5H(2)O are reported, where Ln(III) = Eu (1), Gd (2), Tb (3) and Dy (4), H(2)hmmp = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol. Complexes 1-4 were prepared by the reactions of hmmpH(2) with a manganese salt and the respective lanthanide salt together with NaO(2)CPh and NaN(3). Single-crystal X-ray diffraction analyses reveal that the six Mn(III) and one Ln(III) metal topology in the aggregate can be described as a bitetrahedron. The two peripheral [Mn(III)(3)(μ(3)-O(2-))](7+) triangles are each bonded to a central Ln(III) ion with rare distorted octahedral geometry. The magnetic properties of all the complexes were investigated using variable temperature magnetic susceptibility and both antiferromagnetic and ferromagnetic interactions exist in the [Mn(III)(3)(μ(3)-O(2-))](7+) triangle. Weak ferromagnetic exchange between the Ln(III) and Mn(III) ions has been established for the corresponding Gd derivative. The Gd, Tb and Dy complexes show no evidence of slow relaxation behaviour above 2.0 K.  相似文献   

13.
The initial employment of 2-(hydroxymethyl)pyridine for the synthesis of Mn/Ln (Ln = lanthanide) and Mn/Y clusters, in the absence of an ancillary organic ligand, has afforded a family of tetranuclear [Mn(III)(2)M(III)(2)(OH)(2)(NO(3))(4)(hmp)(4)(H(2)O)(4)](NO(3))(2) (M = Dy, 1; Tb, 2; Gd, 3; Y; 4) anionic compounds. 1-4 possess a planar butterfly (or rhombus) core and are rare examples of carboxylate-free Mn/Ln and Mn/Y clusters. Variable-temperature dc and ac studies established that 1 and 2, which contain highly anisotropic Ln(III) atoms, exhibit slow relaxation of their magnetization vector. Fitting of the obtained magnetization (M) versus field (H) and temperature (T) data for 3 by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) showed the ground state to be S = 3. Complex 4 has an S = 0 ground state. Fitting of the magnetic susceptibility data collected in the 5-300 K range for 3 and 4 to the appropriate van Vleck equations revealed, as expected, extremely weak antiferromagnetic interactions between the paramagnetic ions; for 3, J(1) = -0.16(2) cm(-1) and J(2) = -0.12(1) cm(-1) for the Mn(III)···Mn(III) and Mn(III)···Gd(III) interactions, respectively. The S = 3 ground state of 3 has been rationalized on the basis of the spin frustration pattern in the molecule. For 4, J = -0.75(3) cm(-1) for the Mn(III)···Mn(III) interaction. Spin frustration effects in 3 have been quantitatively analyzed for all possible combinations of sign of J(1) and J(2).  相似文献   

14.
Two series of novel complexes, [Ln(dca)(2)(Phen)(2)(H(2)O)(3)](dca).(phen) (Ln = Pr (1), Gd (2), and Sm (3), dca = N(CN)(-), phen = 1,10-phenanthroline) and [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n), (Ln = Gd (4), Sm (5), and La (6), 2,2'-bipy = 2,2'-bipydine), have been synthesized and structurally characterized by X-ray crystallography. The crystal structures of the first series (1-3) are isomorphous and consist of discrete [Ln(dca)(2)(Phen)(2)(H(2)O)(3)]+ cations, dca anions, and lattice phen molecules; whereas the structures of the second series (4-6) are characterized by infinite chains [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n). The Ln(III) atoms in all complexes are nine-coordinated and form a distorted tricapped trigonal prism environment. The three-dimensional frameworks of 1-6 are constructed by intermolecular hydrogen bond interactions. Variable-temperature magnetic susceptibility measurements for complexes 1, 2, 4, and 5 indicate a Curie-Weiss paramagnetic behavior over 5-300 K.  相似文献   

15.
Lisowski J 《Inorganic chemistry》2011,50(12):5567-5576
The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no heterochiral, heterodinuclear complexes [Ln(1)L(RRRR)Ln(2)L(SSSS)(μ-OH)(2)X(2)](n+) are formed in the reactions of two different mononuclear complexes of opposite chirality.  相似文献   

16.
Treatment of Cp(3)Er with one equivalent of benzimidazole-2-thiol (H(2)Bzimt) in THF affords the monoanionic HBzimt(-) complex Cp(2)Er(η(2)-HBzimt)(THF)(2) (1). Reaction of Cp(3)Yb with two equivalents of H(2)Bzimt gives complex CpYb(η(2)-HBzimt)(2)(THF) (2) at room temperature. Treatment of Cp(3)Ln with three equivalents of H(2)Bzimt in reflux THF affords the homoleptic Ln(η(2)-HBzimt)(3)(THF)(2) (Ln = Er (3), Y (4)). Cp(3)Ln reacts with 0.5 equivalents of H(2)Bzimt to afford the dianionic Bzimt(2-) complexes [(Cp(2)Ln)(THF)](2)(μ-Bzimt) (Ln = Yb (5), Er (6), Dy (7), Y (8)) in good yields, in which the Bzimt(2-) ligand bridges the two metals in an μ-η(2):η(2) coordination mode. Interestingly, controlled hydrolysis of complexes Cp(2)Ln(η(2)-HBzimt)(THF)(2), CpLn(η(2)-HBzimt)(2)(THF) and [(Cp(2)Ln)(THF)](2)(μ-Bzimt) produces the same tetranuclear complexes [CpLn(μ(3)-OH)(μ-η(1):η(2)-HBzimt)](4) (Ln = Yb (9), Er (10), Y (11)), indicating that the hydrolysis selectivity greatly depends on the number of coordinated cyclopentadienyl groups. All complexes were characterized by elemental analysis, spectroscopic properties and X-ray single crystal diffraction analysis.  相似文献   

17.
A convenient and one-pot synthetic method of lanthanide thiolate compounds was developed. An excess of metallic samarium, europium, and ytterbium directly reacted with diaryl disulfides in THF to give selectively Ln(II) thiolate complexes, [Ln(SAr)(&mgr;-SAr)(thf)(3)](2) (1, Ln = Sm; 2, Ln = Eu; Ar = 2,4,6-triisopropylphenyl), Yb(SAr)(2)(py)(4) (3, py = pyridine), and [{Ln(hmpa)(3)}(2)(&mgr;-SPh)(3)][SPh] (6, Ln = Sm; 7, Ln = Eu; 8, Ln = Yb; hmpa = hexamethylphosphoric triamide). Reaction of metallic lanthanides with 3 equiv of disulfides afforded Ln(III) thiolate complexes, Ln(SAr)(3)(py)(n)()(thf)(3)(-)(n)() (9a, Ln = Sm, n = 3; 9b, Ln = Sm, n = 2; 10, Ln = Yb, n = 3) and Ln(SPh)(3)(hmpa)(3) (11, Ln = Sm; 12, Ln = Eu; 13, Ln = Yb). Thus, Ln(II) and Ln(III) thiolate complexes were prepared from the same source by controlling the stoichiometry of the reactants. X-ray analysis of 8 revealed that 8 has the first ionic structure composed of triply bridged dinuclear cation and benezenethiolate anion [8, orthorhombic, space group P2(1)2(1)2(1) with a = 21.057(9), b = 25.963(7), c = 16.442(8) ?, V = 8988(5) ?(3), Z = 4, R = 0.040, R(w) = 0.039 for 5848 reflections with I > 3sigma(I) and 865 parameters]. The monomeric structures of 11 and 13 were revealed by X-ray crystallographic studies [11, triclinic, space group P&onemacr; with a = 14.719(3), b = 17.989(2), c = 11.344(2) ?, alpha = 97.91(1), beta = 110.30(2), gamma = 78.40(1) degrees, V = 2751.9(9) ?(3), Z = 2, R = 0.045, R(w) = 0.041 for 7111 reflections with I > 3sigma(I) and 536 parameters; 13, triclinic, space group P&onemacr; with a = 14.565(2), b = 17.961(2), c = 11.302(1) ?, alpha = 97.72(1), beta = 110.49(1), gamma = 78.37(1) degrees, V = 2706.0(7) ?(3), Z = 2, R = 0.031, R(w) = 0.035 for 9837 reflections with I > 3sigma(I) and 536 parameters]. A comparison with the reported mononuclear and dinuclear lanthanide thiolate complexes has been made to indicate that the Ln-S bonds weakened by the coordination of HMPA to lanthanide metals have ionic character.  相似文献   

18.
The isostructural heterometallic complexes [Ln(III)(2)Mn(III)(2)O(2)(ccnm)(6)(dcnm)(2)(H(2)O)(2)] (Ln = Eu (1Eu), Gd (1Gd), Tb (1Tb), Er (1Er); ccnm = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide) have been synthesised and structurally characterised. The in situ transition metal promoted nucleophilic addition of water to dcnm, forming the derivative ligand ccnm, plays an essential role in cluster formation. The central [Ln(III)(2)Mn(III)(2)(O)(2)] moiety has a "butterfly" topology. The coordinated aqua ligands and the NH(2) group of the ccnm ligands facilitate the formation of a range of hydrogen bonds with the lattice solvent and neighbouring clusters. Magnetic measurements generally reveal weak intracluster antiferromagnetic coupling, except for the large J(MnMn) value in 1Gd. There is some evidence for single molecule magnetic (SMM) behaviour in 1Er. Comparisons of the magnetic properties are made with other recently reported butterfly-type {Ln(III)(x)M(III)(4-x) (d-block)} clusters, x = 1, 2; M = Mn, Fe.  相似文献   

19.
Wang R  Liu H  Carducci MD  Jin T  Zheng C  Zheng Z 《Inorganic chemistry》2001,40(12):2743-2750
Tetranuclear lanthanide-hydroxo complexes of the general formula [Ln(4)(mu(3)-OH)(4)(AA)(x)(H(2)O)(y)](8+) (1, Ln = Sm, AA = Gly, x = 5, y = 11; 2, Ln = Nd, AA = Ala, x = 6, y = 10; 3, Ln = Er, AA = Val, x = 5, y = 10) have been prepared by alpha-amino acid controlled hydrolysis of lanthanide ions under near physiological pH conditions (pH 6-7). The core component of these compounds is a cationic cluster [Ln(4)(mu(3)-OH)(4)](8+) whose constituent lanthanide ions and triply bridging hydroxo groups occupy the alternate vertexes of a distorted cube. The amino acid ligands coordinate the lanthanide ions via bridging carboxylate groups. Utilizing L-glutamic acid as the supporting ligand, a cationic cluster complex (4) formulated as [Er(4)(mu(3)-OH)(4)(Glu)(3)(H(2)O)(8)](5+) has been obtained. Its extended solid-state structure is composed of the cubane-like [Er(4)(mu(3)-OH)(4)](8+) cluster building units interlinked by the carboxylate groups of the glutamate ligands. All compounds are characterized by using a combination of spectroscopic techniques and microanalysis (CHN and metal). Infrared spectra of the complexes suggest the coordinated amino acids to be zwitterionic. The presence of mass (MALDI-TOF) envelopes corresponding to the [Ln(4)(mu(3)-OH)(4)](8+) (Ln = trivalent Sm, Nd, or Er) core containing fragments manifests the integrity of the cubane-like cluster unit. Magnetic studies using Evans' method suggest that exchange interactions between the lanthanide ions are insignificant at ambient temperature. The structural identities of all four compounds have been established crystallographically. The tetranuclear cluster core has been demonstrated to be a common structural motif in these complexes. A mechanism responsible for its self-assembly is postulated.  相似文献   

20.
The synthesis, structures, and magnetic properties of a family of isostructural "bell-shaped" heterometallic coordination clusters [Mn(III)(9)Mn(II)(2)La(III)(2)(μ(4)-O)(7)(μ(3)-O)(μ(3)-OH)(2)(piv)(10.8)(O(2)CC(4)H(3)O)(6.2)(NO(3))(2)(OH(2))(1.5)(MeCN)(0.5)]·12CH(3)CN·2H(2)O (1) and [Mn(III)(9)Mn(II)(2)Ln(2)(μ(4)-O)(7)(μ (3)-O)(μ(3)-OH)(2)(piv)(10.6)(O(2)CC(4)H(3)O)(6.4)(NO(3))(2)(OH(2))]·nCH(3)CN·H(2)O (Ln = Pr(III), n = 8 (2); Ln = Nd(III), n = 10 (3); Ln = Eu(III), n = 17 (4); Ln = Gd(III), n = 13 (5); piv = pivalate) are reported. The complexes were obtained from the reaction of [Mn(III)(2)Mn(II)(4)O(2)(piv)(10)(4-Me-py)(2.5)(pivH)(1.5)] and Ln(NO(3))(3)·6H(2)O in the presence of 2-furan-carboxylic acid (C(4)H(3)OCOOH) in CH(3)CN. Compounds 1-5 are isomorphous, crystallizing in the triclinic space group P1 with Z = 2. The Mn(III) and Mn(II) centers together form the shell of the bell, while the two Ln(III) centers can be regarded as the bell's clapper. The magnetic properties of 1-4 reveal dominant antiferromagnetic interactions between the magnetic centers leading to small spin ground states; while those of 5 indicate similar antiferromagnetic interactions between the manganese ions but with unusually strong ferromagnetic interactions between the Gd(III) ions leading to a large overall spin ground state of S = 11-12. While ac and dc magnetic measurements confirmed that Mn(11)Gd(2) (5) is a single-molecule magnet (SMM) showing hysteresis loops at low temperatures, compounds 1-4 do not show any slow relaxation of the magnetization, indicating that the S = 7 spin of the ferromagnetic Gd(2) unit in 5 is a necessary contribution to its SMM behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号