共查询到2条相似文献,搜索用时 0 毫秒
1.
Yi-Chung Hu 《Applied Mathematical Modelling》2013,37(12-13):7330-7337
Rough set theory is a useful mathematical tool to deal with vagueness and uncertainty in available information. The results of a rough set approach are usually presented in the form of a set of decision rules derived from a decision table. Because using the original decision table is not the only way to implement a rough set approach, it could be interesting to investigate possible improvement in classification performance by replacing the original table with an alternative table obtained by pairwise comparisons among patterns. In this paper, a decision table based on pairwise comparisons is generated using the preference relation as in the Preference Ranking Organization Methods for Enrichment Evaluations (PROMETHEE) methods, to gauges the intensity of preference for one pattern over another pattern on each criterion before classification. The rough-set-based rule classifier (RSRC) provided by the well-known library for the Rough Set Exploration System (RSES) running under Windows as been successfully used to generate decision rules by using the pairwise-comparisons-based tables. Specifically, parameters related to the preference function on each criterion have been determined using a genetic-algorithm-based approach. Computer simulations involving several real-world data sets have revealed that of the proposed classification method performs well compared to other well-known classification methods and to RSRC using the original tables. 相似文献
2.
This paper investigates the feature subset selection problem for the binary classification problem using logistic regression model. We developed a modified discrete particle swarm optimization (PSO) algorithm for the feature subset selection problem. This approach embodies an adaptive feature selection procedure which dynamically accounts for the relevance and dependence of the features included the feature subset. We compare the proposed methodology with the tabu search and scatter search algorithms using publicly available datasets. The results show that the proposed discrete PSO algorithm is competitive in terms of both classification accuracy and computational performance. 相似文献