首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical simulations have been undertaken for the benchmark problem of annular extrudate swell present in pipe extrusion and parison formation in blow molding. The finite element method (FEM) is used to provide numerical results for different inner/outer diameter ratios κ under steady-state conditions. The Herschel-Bulkley model of viscoplasticity is used with the Papanastasiou regularization, which reduces with appropriate parameter choices to the Bingham–Papanastasiou, power-law and Newtonian models. The present results provide the shape of the extrudate, and in particular the thickness and diameter swells, as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The pressures from the simulations have been used to compute the excess pressure losses in the system (exit correction). While shear-thinning leads to reduced swelling relative to the Newtonian values for all κ-values, the opposite is true for shear-thickening fluids, which exhibit considerable swelling. Viscoplasticity leads to decreased extrudate swell as the dimensionless yield stress goes from zero (Newtonian behaviour) to an asymptotic value of fully plastic behaviour. The exit correction decreases to zero with a decrease in the power-law index to zero and an increase in the dimensionless yield stress to its asymptotic limit. However, the decrease is not monotonic: for power-law fluids it has maxima in the range of power-law indices between 0.8 and 0.6, while for viscoplastic fluids it has maxima around Bingham number values of 5.  相似文献   

2.
Single phase non-Newtonian microporous flow combined with the electroviscous effect is investigated in the pore-scale under conditions of various rheological properties and electrokinetic parameters. The lattice Boltzmann method is employed to solve both the electric potential field and flow velocity field. The simulation of commonly used power-law non-Newtonian flow shows that the electroviscous effect on the flow depends on both the fluid rheological behavior and pore surface area ratio significantly. For the shear thinning fluid with power-law exponent n < 1, the fluid viscosity near the wall is smaller and the electrovicous effect plays a more important role compared to the Newtonian fluid and shear thickening fluid. The high pore surface area ratio in the porous structure increases the electroviscous force and the induced flow resistance becomes important even to the flow of Newtonian and shear thickening fluids.  相似文献   

3.
Steady and unsteady laminar flows in a planar 2D T-junction, having a dividing or bifurcating flow arrangement (one main channel with a side branch at 90°), are studied numerically for non-Newtonian inelastic fluids whose rheological characteristics are similar to those of blood. These computational fluid dynamics simulations explore a wide range of variation of inertia (through the Reynolds number, Re), flow rate ratio (proportion of extracted to inlet flow rates, β) and shear thinning (the power-law index of the model, n), and investigate their influence on the sizes and intensities of the recirculating eddies formed near the bifurcation, and on the resulting distribution of the shear stress fields. Such flow characteristics are relevant to hemodynamics, being related to the genesis and development of vascular diseases, like the formation of atherosclerotic plaques and thrombi near arterial bifurcations.To represent the decay of viscosity with shear rate we apply the Carreau-Yasuda equation, one of the most utilized Generalized Newtonian Fluid model in blood simulations. In many comparisons of the present parametric study it was require that the level of inertia was kept approximately the same when n was varied. This implied a consistent definition of Re with the viscosity calculated at a representative shear rate.  相似文献   

4.
5.
6.
Biofluids which exhibit non-Newtonian behavior are widely used in microfluidic devices which involve fluid mixing in microscales. In order to study the effects of shear depending viscosity of non-Newtonian fluids on characteristics of electroosmotic micromixing, a numerical investigation of flow of power-law fluid in a two-dimensional microchannel with nonuniform zeta potential distributions along the channel walls was carried out via finite volume scheme. The simulation results confirmed that the shear depending viscosity has a significant effect on the degree of mixing efficiency. It was shown as the fluid behavior index of power-law fluid, n, decreases, more homogeneous solution can be achieved at the microchannel outlet. Hence, electroosmotic micromixing was found more practical and efficient in microscale mixing of pseudoplastic fluids rather than those Newtonian and dilatant ones. Furthermore, it was found that increase in Reynolds number results in lower mixing efficiency while electroosmotic forces are kept constant.  相似文献   

7.
In this work, the continuity and momentum equations have been solved numerically to investigate the flow of power-law fluids over a rotating cylinder. In particular, consideration has been given to the prediction of drag and lift coefficients as functions of the pertinent governing dimensionless parameters, namely, power-law index (1  n  0.2), dimensionless rotational velocity (0  α  6) and the Reynolds number (0.1  Re  40). Over the range of Reynolds number, the flow is known to be steady. Detailed streamline and vorticity contours adjacent to the rotating cylinder and surface pressure profiles provide further insights into the nature of flow. Finally, the paper is concluded by comparing the present numerical results with the scant experimental data on velocity profiles in the vicinity of a rotating cylinder available in the literature. The correspondence is seen to be excellent for Newtonian and inelastic fluids.  相似文献   

8.
The extrudate swell phenomenon of a purely viscous fluid is analysed by solving simultaneously the Cauchy momentum equations along with the continuity equation by means of a finite difference method. The circular and planar jet flows of Newtonian and power-law fluids are simulated using a control volume finite difference method suggested by Patankar called SIMPLER (semi-implicit method for pressure-linked equations). This method uses the velocity components and pressure as the primitive variables and employs a staggered grid and control volume for each separate variable. The numerical results show good agreement with the analytical solution of the axisymmetric stick-slip problem and exhibit a Newtonian swelling ratio of 13.2% or 19.2% for a capillary or slit die respectively in accordance with previously reported experimental and numerical results. Shear thinning results in a decrease in swelling ratio, as does the introduction of gravity and surface tension.  相似文献   

9.
An experimental programme has been carried out to obtain data for the isothermal swelling of dilute viscoelastic fluids based on the polyisobutylene-polybutene system. The fluid was thus a constant viscosity one and so the observed swell was predominantly due to elastic effects alone. To establish the experimental rig and procedure, preliminary results for the creeping flow of a Newtonian fluid, based on a polybutene, were acquired. The Newtonian results, showing a creeping flow swell of 13.8%, demonstrated that the rig and procedure were satisfactory for the formation of free, isothermal jets. The viscoelastic results were quite unexpected, showing that dilute elastic solutions can exhibit significant swelling despite the fact that the recoverable shear is small (S R < 0.1). These results qualitatively confirm a recent numerical study [1].  相似文献   

10.
The entrance and exit flow processes for a cylindrical geometry are analyzed by writing macroscopic mechanical energy balances for a capillary viscometer. These equations can be used to compute the entrance and exit excess dissipation integrals from measured pressure differences if viscometric normal stress data are available for the material of interest. Upper and lower bounds are derived for these integrals for cases when high shear rate normal stress data are not available. The utilization of macroscopic mechanical energy balances in the interpretation of capillary viscometer results is illustrated using numerical solutions for a Maxwell fluid and experimental pressure drop data for high density polythylene.  相似文献   

11.
Developing and fully developed velocity profiles in the entrance region of an abrupt 2-to-1 annular contraction were measured for a number of visco-elastic polymer solutions. Experimental results were obtained for Reynolds number and flow behaviour index in the range 9.8 ? Re ? 355 and 0.372 ? n ? 0.55 respectively. A momentum-energy integral technique was employed in the boundary layer analysis. The deviation from inelastic behaviour was indicated by the ratio of elastic to inertial forces, Ws/Re. Within the limits of confidence of the experimental results, good agreement with theoretical predictions was obtained and very little deviation from inelastic behaviour was observed for Ws/Re < 0.08. For the test fluids investigated, the entrance length was found to be longer than that predicted for the corresponding inelastic fluids of the same n.  相似文献   

12.
The non-Darcy flow characteristics of power-law non-Newtonian fluids past a wedge embedded in a porous medium have been studied. The governing equations are converted to a system of first-order ordinary differential equations by means of a local similarity transformation and have been solved numerically, for a number of parameter combinations of wedge angle parameter m, power-law index of the non-Newtonian fluids n, first-order resistance A and second-order resistance B, using a fourth-order Runge–Kutta integration scheme with the Newton–Raphson shooting method. Velocity and shear stress at the body surface are presented for a range of the above parameters. These results are also compared with the corresponding flow problems for a Newtonian fluid. Numerical results show that for the case of the constant wedge angle and material parameter A, the local skin friction coefficient is lower for a dilatant fluid as compared with the pseudo-plastic or Newtonian fluids.  相似文献   

13.
The transient laminar forced convection to power-law fluids in thermally developing, hydrodynamically developed flow inside parallel-plate ducts and circular tubes resulting from a sudden change in wall temperature is studied. The generalized integral transform and the Laplace transform techniques are employed to develop approximate analytic solutions. The local Nusselt number and average fluid temperature are presented over the range of the dimensionless axial coordinate Z varying from 10?4 to 10?1 for several dimensionless times. Three different values of the power-law index are considered in the study includedn=1/3,n=1 andn=3 corresponding to, respectively, the pseudoplastic, Newtonian and dilatant fluids.  相似文献   

14.
Numerical simulations have been undertaken for the benchmark problem of fountain flow present in injection-mold filling. The Finite Element Method (FEM) is used to provide numerical results for both cases of planar and axisymmetric domains under steady-state conditions. The Herschel–Bulkley model of viscoplasticity is used, which reduces with appropriate modifications to the Bingham, power-law and Newtonian models. The present results extend previous ones regarding the shape of the front, which is essential in correctly capturing the flow field. In particular the centreline front position is found as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The pressures from the simulations have been used to compute the excess pressure losses in the system (front pressure correction or exit correction). Both shear-thinning and shear-thickening lead to more extended front positions relative to the Newtonian values, which are 0.895 for the planar case and 0.835 for the axisymmetric one. Viscoplasticity leads also to more extended front positions as the dimensionless yield stress goes from zero (Newtonian behaviour) to higher values of the yield stress. In both cases of non-Newtonian behaviour, the front tends to follow the development of the fully developed Poiseuille velocity profile, which tends towards a plug-like profile at the extreme cases of non-Newtonianness. The front pressure (exit) correction increases monotonically with the decrease in the power-law index and the increase in the dimensionless yield stress.  相似文献   

15.
The linear stability of wall-injected pressure- driven Couette-like flow in power-law fluids is studied. Previous study on this kind of flow for Newtonian fluids by Nicoud and Angilella [Phys. Rev. E 56, 3000 (1997)] was extended to power-law fluids to understand the effects of shear-thinning/thickening nature on the flow stability. A related expression between the critical crossflow Reynolds number for Newtonian fluids and that for power-law fluids is obtained as the streamwise Reynolds number is large enough based on numerical computations, and verified theoretically in the case of a limiting condition with the power-law index.  相似文献   

16.
An exact solution is presented for the squeeze film flow of an Oldroyd B. fluid. The solution demonstrates that the flow kinematics is similar to the Newtonian (or Maxwellian) one. Theoretical predictions for constant velocity squeezing are compared to experimental observation for well characterized non-shear thinning elastic fluids. It is shown both theoretically and experimentally that the effect of elasticity in a constant velocity squeeze film flow is to always reduce the load relative to the inelastic (Newtonian) prediction and that this load reduction falls between the upper and lower asymptote prediction by the exact solution for the Oldroyd B fluid. The upper load asymptote is given by the Stefan solution for the viscosity of the polymer solution and the lower asymptote is given by the Stefan solution for the viscosity of the solvent. Experimental observations agree with the theoretical prediction for the Oldroyd B fluid at low shear rates where it is shown that the steady and dynamic flow properties of the test fluids used in the experimental program are well represented by the Oldroyd B constitutive equation. With the exception of the work of Lee et al. [6] for constant load squeezing of a Maxwell fluid, this work represents one of the few cases where experimental observation of large effects due to elasticity are indeed predicted with a constitutive equation which actually describes the steady and dynamic shear properties of the fluids used in the experimental program.  相似文献   

17.
Masood Khan  Azeem Shahzad 《Meccanica》2013,48(10):2391-2400
The steady two-dimensional stagnation-point flow, represented by Sisko fluid constitutive model, over a stretching sheet is investigated theoretically. Using suitable similarity transformations, the governing boundary-layer equations are transformed into the self-similar non-linear ordinary differential equation. The transformed equation is then solved using a very efficient analytic technique namely the homotopy analysis method (HAM) and the HAM solutions are validated by the exact analytic solutions obtain in certain special cases. The influence of the power-law index (n), the material parameter (A) and the velocity ratio parameter (d/c) on the flow characteristics is studied and presented through several graphs. In addition, the local skin friction coefficient for several values of these parameters is tabulated and examined. The similarity solutions for both the Newtonian and the power-law fluids are presented as special cases of the analysis. The results obtained reveal that, in comparison with the Newtonian and the power-law fluids, the velocity profiles of the Sisko fluid are much faster (slower), for d/c<1 (d/c>1), respectively.  相似文献   

18.
Boger fluids are dilute polymer solutions exhibiting high elasticity at low apparent shear rates, which leads to high extrudate swell. Numerical simulations have been undertaken for the flow of three Boger fluids (including benchmark Fluid M1), obeying an integral constitutive equation of the K-BKZ type, capable of describing the behavior of dilute polymer solutions. Their rheology is well captured by the integral model. The flow simulations are performed for planar and axisymmetric geometries without or with gravity. The results provide the extrudate swell and the excess pressure losses (exit correction), as well as the shape and extent of the free surface. All these quantities increase rapidly and monotonically with increasing elasticity level measured by the stress ratio, SR. It was found that the main reason for the high extrudate swelling is high normal stresses exhibited in shear flow (namely, the first normal-stress difference, N1). Surprisingly, the elongational parameter of the model or a second normal-stress difference N2 do not affect the results appreciably. Gravity serves to lower the swelling considerably, and makes the simulations easier and in overall agreement with previous experiments.  相似文献   

19.
A finite element technique is proposed to predict the purely viscous squeeze-film behaviour of an arbitrary shear-thinning fluid confined between parallel discs and subjected to a constant load. The technique requires establishment of the distribution of viscosity in the gap. The variable viscosity is modelled by a discrete number of Newtonian fluids, with each fluid lying in a region bounded by lines of constant shear rate. Each of these Newtonian regions is further divided into regions which appear as “finite element” rectangles in the r-z plane. The equations governing squeeze-film flow are applied to this finite element network and an ordinary differential equation is ultimately derived which governs the gap decrease with time. Solving this equation is not simple because the coefficients of two terms change as the gap decreases. When the number of Newtonian fluids is sufficient, the technique predicts the squeeze-film time of a power-law fluid to within a fraction of a percent. Application of the technique to synovial fluid viscosity prevents the cartilage surfaces from touching for only a fraction of a second.  相似文献   

20.
The steady forced convection flow of a power-law fluid over a horizontal plate embedded in a saturated Darcy-Brinkman porous medium is considered. The flow is driven by a constant pressure gradient. In addition to the convective inertia, also the “porous Forchheimer inertia” effects are taken into account. The pertinent boundary value problem is investigated analytically, as well as numerically by a finite difference method. It is found that far away from the leading edge, the velocity boundary layer always approaches an asymptotic state with identically vanishing transverse component. This holds for pseudoplastic (0 < n < 1), Newtonian (n = 1), and dilatant (n > 1) fluids as well. The asymptotic solution is given for several particular values of the power-law index n in an exact analytical form. The main flow characteristics of physical and engineering interest are discussed in the paper in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号