首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Numerical simulations of the drag-reducing turbulent channel flow caused by polymer addition are performed. A bead-spring chain model is employed as a model of polymer aggregation. The model consists of beads and springs to represent the polymer dynamics. Three drag-reduction cases are studied with different spring constants that correspond to the relaxation time of the polymer. The energy budget is mainly focused upon to discuss the drag-reduction mechanism. Our results show that a decreasing pressure-strain correlation mainly contributes to strengthening the anisotropy of the turbulence. Furthermore, energy transport by the polymer models attenuates the turbulence. These viscoelastic effects on the drag-reducing flow are intensified with decreasing spring constant. By visualizing the flow field, it is found that this polymer energy transport is related to the orientation of the polymer.  相似文献   

2.
Small amplitude surface tension driven oscillations of a spherical bubble in a dilute polymer solution are considered. The rheological properties of the liquid are modelled by using a 3-constant constitutive equation of the Oldroyd type. The Laplace transform of the solution of the initial value problem is inverted numerically. As in the Newtonian fluid case, both a discrete and a continuous spectrum occurs. In addition to the non-dimensional parameters in the corresponding problem for a Newtonian fluid, the results depend on two other parameters: the ratio of the relaxation time of the polymer solution and the time scale of the flow (the Deborah number) and the product of the polymer concentration and the intrinsic viscosity. For small bubbles in an aqueous solution having a small relaxation time, significant additional damping is found even for dilute solutions.  相似文献   

3.
液晶高分子各向异性粘弹性流体本构方程理论   总被引:6,自引:0,他引:6  
韩式方 《力学学报》2001,33(5):588-600
将液晶高分子-各向异性流体的本构方程,建立在Oldroyd随体导数观点基础上。推广上随机Oldroyd B流体模型,提出共转OldroydB流体模型,同时将微观结构的影响通过宏观参数表示出来,使在宏观理论中包含微观结构的贡献,即引入取向物质函数,非线性各向异性黏度函数和各向异性松弛时间及推迟时间等,表征取向运动对黏度和松弛及推迟现象的影响,在此基础上开展了一类新的液晶高分子-Oldroyd型本构方程理论,由该类型本构方程得出的物质函数,液晶高分子流体的第一、第二法向应力差与实验结果一致,解释了液晶高分子溶液的第一、第二法向应力差的特殊流变学行为。  相似文献   

4.
A theoretical model for the translocation process of biomacromolecule is developed based on the self-consistent field theory (SCFT), where the biomacromolecule is regarded as a self-avoiding polymer chain actuated by the external potential. In this theoretical model, the external potential, the Coulomb electrostatic potential of the charged ions (the electrolyte effect), and the attractive interaction between the polymer and the nanopore (the excluded volume effect) are all considered, which have effects on the free energy landscape and conformation entropy during the translocation stage. The result shows that the entropy barrier of the polymer in the solution with high valence electrolyte is much larger than that with low valence electrolyte under the same condition, leading to that the translocation time of the DNA molecules in the solution increases when the valence electrolyte increases. In addition, the attractive interaction between the polymer and the nanopore increases the free energy of the polymer, which means that the probability of the translocation through the nanopore increases. The average translocation time decreases when the excluded volume effect parameter increases. The electrolyte effect can prolong the average translocation time. The simulation results agree well with the available experimental results.  相似文献   

5.
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William–Landel–Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.  相似文献   

6.
Previous work has shown that anomalous pressure behaviour occurs when dilute polymer solutions are subjected to elongational flows such as those existing upstream of a capillary tube entrance, of an orifice and of the stagnation point of a Pilot tube probe. Tests have been conducted with aqueous solutions of HPAM at various concentrations using the above three flow geometries. It is shown that pressure anomalies occured when critical values of the ratio between a velocity and length scale, representative of the strain rate, are exceeded. They are proportional to the power of the strain rate with an exponent larger than one. Based on previous and present results, it appears that the polymer solutions' behaviour may be characterized by three parameters: an anomalous stress magnitude, a relaxation time (inverse of the critical strain rate) and the exponent of the power law. The first two parameters depend on the polymer type, concentration and molecular weight, while the third depends only on the polymer type. The anomalous pressure is also affected by the conformation of the molecules as shown by results obtained with HPAM solutions containing varied amounts of NaCl.  相似文献   

7.
Aqueous solutions composed of dispersed nanoparticles and entangled polymers are shown to exhibit common viscoelasticity over a range of particle and polymer concentrations. Time–temperature superposition and time–concentration superposition are applied to generate rheological master curves for neat and laponite-filled aqueous solutions of poly(ethylene oxide). The shift factors were correlated in terms of temperature and concentration and are found to differ from previous reports for ideal polymer solutions, which can be rationalized with a molecular interpretation of the structure of the laponite–polymer solutions. Laponite addition to the concentrated polymer solution is observed to increase the relaxation time but decrease the elastic modulus, which is a consequence of polymer adsorption and bridging. The addition of small amounts of laponite to stable PEO–water solutions also leads to ageing on the time scale of days.  相似文献   

8.
9.
The use of constant viscosity, highly elastic polymer solutions, so called Boger fluids, has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. However, the behavior of these fluids is still complicated by many different physical processes occurring within a narrow window of observation time and applied shear rate. In this study, we investigate the long-time shear behavior of an ideal Boger fluid: a well characterized, athermal, dilute, binary solution of high molecular weight polystyrene in oligomeric polystyrene. Rheological measurements show that under an applied steady shear flow, this family of polymer solutions undergoes a transient decay of normal stresses on a timescale much longer than the polymer molecule's relaxation time. Rheological and flow visualization results demonstrate that the observed phenomenon is not caused by polymer degradation, phase separation, viscous heating, or secondary flows from elastic instabilities. Although the timescale is much shorter than that associated with polymer migration in the same solutions (MacDonald and Muller, 1996), the appearance of this phenomenon only at the rates where migration has been observed suggests that it may be a prerequisite for observing migration. In addition, we note that through sufficient preshearing of the sample, the normal stress decrease suppresses the elastic instability. These results show that there is considerable uncertainty in choosing the appropriate measure of the fluid relaxation time for consistently modeling the critical condition for the elastic instability, the decay of normal stresses, and the migration of polymer species.  相似文献   

10.
Four constant viscosity, highly elastic fluids of different viscosity and elasticity levels are presented. The viscosity ranges from 4 × 10?3 to 5.0 Pa s and the Maxwell relaxation time varies from 0.09 to 4.5 s. The steady and dynamic shear properties are determined. These fluids comply with the requirements of the simple fluid theory except for theG′ andN 1/2 data where a slight deviation is observed. The results suggest the possibility of preparing a wide range of constant viscosity elastic fluids with specific values of viscosity and relaxation time by manipulating polymer molecular parameters as well as polymer concentration, solvent viscosity and salt addition. The effects of each of these parameters on the rheological behaviour are examined.  相似文献   

11.
The voided charged polymer film, also called piezoelectret, has a very large quasi-piezoelectric coefficient in the thickness direction, and has emerged as a new kind of electromechanical transducer materials. Piezoelectret film is usually prepared from polymer by means of biaxial stretching and electric charging process. Due to the inherent viscosity of polymer, the quasi-piezoelectric d33 coefficient of cellular piezoelectret film usually depends on the pressure and time of the measurement. In this article, experiments were carried out on the time spectra of quasi-piezoelectric d33 coefficient in the thickness direction for cellular linear Polypropylene piezoelectret film. To study the effect of void microstructures on the time-dependence of quasi-piezoelectric d33 coefficient, samples of three different thicknesses were tested under two different pressures. The micromechanical theory for viscoelastic composite was extended to predict the electromechanical properties of voided charged polymer film. The voids with surplus charges, which can be piezoelectriclike under deformation, are considered as ellipsoidal heterogeneous piezoelectric inclusions, while the viscous polymer is taken as the matrix. In Laplace transformed space, the generalized Eshelby tensor is formulated for the isotropic nonpolar matrix as well as for the anisotropic matrix. The Mori–Tanaka average scheme is used to find the overall electromechanical properties. Time dependence of the effective properties in real space can be studied by Laplacian inversion. Sensitivity analysis to various parameters is investigated for time dependence of the effective properties, including effective elastic moduli and the quasi-piezoelectric coefficients. Theoretical simulation was presented and comparison with experimental results was conducted. Both qualitative analysis and quantitative comparison with experiments show that this theoretical formulation can predict the time dependence of the effective properties of voided charged piezoelectret film.  相似文献   

12.
A polymer solution with a transient network structure due to the entanglement of long chain molecules exhibits a viscoelastic behavior when it flows through a tortuous and diverging/converging channel in porous media. A constitutive equation is first developed to represent the viscoelastic behavior of polymer solutions in this article. Then a 3D viscoelastic polymer flooding model is established to examine the effect of elasticity of polymers on EOR (enhanced oil recovery). The model is validated in comparison with laboratorial coring data. The simulated results show that the oil recovery of viscoelastic polymer flooding can be enhanced by larger displacement efficiency due to its microscopic roles. In the meanwhile, the injection pressure required increases correspondingly if the elastic effect is significant. Relaxation time as a major characteristic parameter of viscoelastic polymer plays a decisive role, and therefore the HPAM (partially hydrolyzed polyacrylamide) with evident elastic property is recommended in chemical flooding.  相似文献   

13.
The homogeneous dispersion of nanoparticles in solvents or polymer matrices is essential for practical application of nanocomposites. In this study, the planetary ball milling technique was used to de-agglomerate silica nanoparticles in butyl acetate. The size of the nanosilica aggregates was evaluated by TEM and SEM. With the addition of polyacrylate polymer to the organic solvent, the nanoparticle agglomerates were effectively broken up by planetary ball milling at the proper milling time; however, re-agglomeration occurred after a longer milling time. The results of TGA and FTIR indicated that the polyacrylate molecules could be adsorbed in situ onto the nanoparticles. Behaving similar to a dispersant, the adsorbed polyacrylate reduced the blend viscosity significantly and prevented re-agglomeration of the nanoparticles. Utilizing the polyacrylate polymer both as the dispersant and the polymer matrix, the polyacrylate-based nanocoatings were further prepared. The optical transmittance and haze value of the nanocoatings were found to be sensitive to the dispersion level of the nanoparticles, and the elastic modulus and hardness of the nanocoatings were improved in comparison with those of the neat polymer coating.  相似文献   

14.
形状记忆聚合物具有形状变化后在特定条件下可恢复的特点,因此作为一种柔性基底材料在柔性电子中得到广泛应用。对于形状记忆聚合物基底和弹性薄膜组成的双层结构,当 基底收缩时,其表面的弹性薄膜可以形成屈曲波形。针对基底收缩过程中波形的变化, 本文实验测得形状记忆聚合物材料在不同温度下的 属性,结合一维应变恢复函数,利用柔性基底表面薄膜屈曲波形参数(波幅、波长等)表达式,求解得到了在基底收缩的过程中,弹性薄膜屈曲波形的变化规律,和实验结果吻合很好。  相似文献   

15.
We present a differential constitutive model of stress relaxation in polydisperse linear polymer melts and solutions that contains contributions from reptation, contour-length fluctuations, and chain stretching. The predictions of the model during fast start-up and steady shear flows of polymer melts are in accord with experimental observations. Moreover, in accordance with reported experimental literature (Osaki et al. in J Polym Sci B Polym Phys 38:2043–2050, 2000), the model predicts, for a range of shear rates, two overshoots in shear stress during start-up of steady shear flows of bidisperse polymer melts having components with widely separated molar masses. Two overshoots result only when the stretch or Rouse relaxation time of the higher molar mass component is longer than the terminal relaxation time of the lower molar mass component. The “first overshoot” is the first to appear with increasing shear rate and occurs as a result of the stretching of longer chains. Transient stretching of the short chains is responsible for the early time second overshoot. The model predictions in steady and transitional extensional flows are also remarkable for both monodisperse and bidisperse polymer solutions. The computationally efficient differential model can be used to predict rheology of commercial polydisperse polymer melts and solutions.  相似文献   

16.
Simultaneous measurements of extensional stresses and birefringence are rare, especially for polymer solutions. This paper reports such measurements using the filament stretch rheometer and a phase modulated birefringence system. Both the extensional viscosity and the birefringence increase monotonically with strain and reach a plateau. Estimates of this saturation value for birefringence, using Peterlin’s formula for birefringence of a fully extended polymer chain are in agreement with the experimental results. However, estimates of the saturation value of the extensional viscosity using Batchelor’s formula for suspensions of elongated fibres are much higher than observed. Reasons for the inability of the flow field to fully unravel the polymer chain are examined using published Brownian dynamics simulations. It is tentatively concluded that the polymer chain forms a folded structure. Such folded chains can exhibit saturation in birefringence even though the stress is less than that expected for a fully extended molecule.Simultaneous measurements of stress and birefringence during relaxation indicate that the birefringence decays much more slowly than the stress. The stress-birefringence data show a pronounced hysteresis as predicted by bead-rod models. The failure of the stress optic coefficient in strong flows is noted.Experiments were also performed wherein the strain was increased linearly with time, then held constant for a short period before being increased again. The response of the stress and birefringence in such experiments is dramatically different and can be traced to the different configurations obtained during stretching and relaxation. The results cast doubt on the appropriateness of pre-averaging the non-linear terms in constitutive equations.  相似文献   

17.
PBX材料蠕变性能的云纹干涉法实验研究   总被引:5,自引:0,他引:5  
本文利用云纹干涉法对PBX材料蠕变行为进行了研究。实验中采用圆盘试件进行压缩实验。利用圆盘对径受压实验间接拉伸的特点,测量了PBX材料的拉伸蠕变及蠕变恢复曲线,同时也得到了圆盘部分区域压缩蠕变及蠕变恢复曲线。实验中,观察到蠕变的阶段上升现象,这一现象不同于一般的纯的高聚物的蠕变变形。并针对这一蠕变现象利用破坏力学理论进行了初步分析。文中的实验现象及实验数据将为PBX材料蠕变破坏变形的进一步的理论分析提供科学依据。  相似文献   

18.
Extensional rheometry has only recently been developed into a commercially available tool with the introduction of the capillary breakup extensional rheometer (CaBER). CaBER is currently being used to measure the transient extensional viscosity evolution of mid to low-viscosity viscoelastic fluids. The elegance of capillary breakup extensional experiments lies in the simplicity of the procedure. An initial step-stretch is applied to generate a fluid filament. What follows is a self-driven uniaxial extensional flow in which surface tension is balanced by the extensional stresses resulting from the capillary thinning of the liquid bridge. In this paper, we describe the results from a series of experiments in which the step-stretch parameters of final length, and the extension rate of the stretch were varied and their effects on the measured extensional viscosity and extensional relaxation time were recorded. To focus on the parameter effects, well-characterized surfactant wormlike micelle solutions, polymer solutions, and immiscible polymer blends were used to include a range of characteristic relaxation times and morphologies. Our experimental results demonstrate a strong dependence of extensional rheology on step-stretch conditions for both wormlike micelle solutions and immiscible polymer blends. Both the extensional viscosity and extensional relaxation time of the wormlike micelle solutions were found to decrease with increasing extension rate and strain of the step-stretch. For the case of the immiscible polymer blends, fast step-stretches were found to result in droplet deformation and an overshoot in the extensional viscosity which increased with increasing strain rates. Conversely, the polymer solutions tested were found to be insensitive to step-stretch parameters. In addition, numerical simulations were performed using the appropriate constitutive models to assist in both the interpretation of the CaBER results and the optimization of the experimental protocol. From our results, it is clear that any rheological results obtained using the CaBER technique must be properly considered in the context of the stretch parameters and the effects that preconditioning has on viscoelastic fluids.  相似文献   

19.
The major objectives of this study are to analytically and experimentally determine the residual resistance factor in the fractured medium based on the polymer solution properties and operational conditions. The parameters considered in this study are the polymer concentration, power law constitutive equation parameter, and salt concentration, sulfonation content of polymer, temperature, and molecular weight of the water soluble polymers which are used in polymer flooding for enhanced oil recovery. The results indicated that residual resistance factor in fractured medium is dependent on the coil overlap parameter and power law equation parameter of polymer. The coil overlap parameter is a dimensionless number consists of intrinsic viscosity and polymer concentration. Since intrinsic viscosity is a function of polymer diameter in medium conditions, to predict the residual resistance factor in fracture medium, an experimental correlation is generated for determination of the molecular diameter of polymer based on polymer molecular weight, temperature, salt concentration, and sulfonation content.  相似文献   

20.
Rheological equations of state of dilute polymer solutions in viscoelastic fluid with one relaxation time are derived by applying a structural approach. The system under consideration is simulated by the superposition of two interpenetrating interacting conitua. The hydrodynamic behaviour of single polymer chains is simulated using the subchain model representing a linear sequence of frictional centres, spherical Brownian particles chain-bonded by means of elastic forces. The oscillatory shearing flow of the solution is studied on the basis of the equations derived. The expressions for the complex viscosity and relaxation times are determined. It is shown that the availability of polymer additions brings about a strong smearing of the relaxation spectrum of the carrying medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号