首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient-evoked otoacoustic emissions (TEOAE) are responses generated within the inner ear in response to acoustic stimuli and are indicative of normal cochlear function. They are commonly acquired by averaging post-stimulus acoustic responses recorded near the eardrum in response to brief stimuli such as clicks or tone pips. In this study a new long duration stimulus consisting of a frequency swept tone is introduced for the acquisition of TEOAEs. Like stimulus frequency generated OAEs, swept-tone responses contain embedded OAEs. With swept-tone analysis, OAEs can be recovered by convolving it with a time reversed swept-tone signal resulting in time-compression. In addition, higher order nonlinear OAE responses were removed from the linear TEOAE. The results show comparable phase and time-frequency properties between the click and swept-tone evoked OAEs. Swept-tone acquisition of TEOAEs has beneficial noise properties, improving the signal to noise ratio by 6 dB compared to click evoked responses thus offering testing time savings. Additionally, swept-tone analysis removed synchronized spontaneous OAE activity from the recordings of subjects exhibiting such responses in conventional click TEOAEs. Since swept-tone stimulus consists of a single frequency component at any instantaneous moment, its analysis also provides for direct comparison with stimulus-frequency OAEs and click evoked OAEs.  相似文献   

2.
The relationship between hearing loss, detected by measuring the audiometric threshold shift, and the presence of long-lasting otoacoustic emissions, has been studied in a population of 66 adult males, by analyzing the cochlear response in the 80 ms following the subministration of a click stimulus. Most long-lasting OAEs are also recognizable as Synchronized Spontaneous OAEs (SSOAEs). The OAE characteristic decay times were evaluated according to the model by Sisto and Moleti [J. Acoust. Soc. Am. 106, 1893 (1999)]. The starting hypothesis, confirmed by the results, is that long decay time and large equilibrium amplitude are both manifestations of the effectiveness of the active feedback mechanism. The prevalence and frequency distribution of long-lasting OAEs, and of their SSOAE subset, have been separately analyzed for normal and impaired ears. No long-lasting OAE was found within the hearing loss frequency range, but several were found in impaired ears outside the hearing loss range, both at lower and higher frequencies. This result suggests that the correlation between the presence of long-lasting OAEs and good cochlear functionality be local in the frequency domain. The monitor of the OAE decay time is proposed as a new possible method for early detecting hearing loss in populations exposed to noise.  相似文献   

3.
Recently, investigators of otoacoustic emissions (OAEs) have shown interest in measuring OAEs to frequencies higher than 10 kHz. Most commercial instruments used to measure OAEs do not specify the microphone frequency response at higher frequencies, nor does their typically integrated design make it convenient to measure it. OAE probes manufactured by Etymotic Research have reasonably constant microphone sensitivity up to about 10 kHz and allow direct access to both the sound sources and microphone preamplifier output. A detailed procedure for calibrating the Etymotic Research OAE probe microphone to extend its usable frequency range to frequencies up to 20 kHz is described.  相似文献   

4.
Otoacoustic emissions (OAEs) evoked by broadband clicks and by single tones are widely regarded as originating via different mechanisms within the cochlea. Whereas the properties of stimulus-frequency OAEs (SFOAEs) evoked by tones are consistent with an origin via linear mechanisms involving coherent wave scattering by preexisting perturbations in the mechanics, OAEs evoked by broadband clicks (CEOAEs) have been suggested to originate via nonlinear interactions among the different frequency components of the stimulus (e.g., intermodulation distortion). The experiments reported here test for bandwidth-dependent differences in mechanisms of OAE generation. Click-evoked and stimulus-frequency OAE input/output transfer functions were obtained and compared as a function of stimulus frequency and intensity. At low and moderate intensities human CEOAE and SFOAE transfer functions are nearly identical. When stimulus intensity is measured in "bandwidth-compensated" sound-pressure level (cSPL), CEOAE and SFOAE transfer functions have equivalent growth functions at fixed frequency and equivalent spectral characteristics at fixed intensity. This equivalence suggests that CEOAEs and SFOAEs are generated by the same mechanism. Although CEOAEs and SFOAEs are known by different names because of the different stimuli used to evoke them, the two OAE "types" are evidently best understood as members of the same emission family.  相似文献   

5.
Transient-evoked otoacoustic emissions (TEOAEs) and derived, noise-evoked otoacoustic emissions (derived-NEOAEs) were measured in seven normally hearing subjects. The evoked OAEs were all recorded at three excitation levels chosen to ensure that the OAE level curve compressive region was reached. The short-time correlation coefficient (STCC) was used to compare the OAE waveforms at different excitation levels, and thus estimate the time over which the response exceeds the noise level. The short-time correlation for TEOAEs is significant for longer than it is for NEOAEs, particularly in some individuals, and the STCC allows this to be quantified. This suggests that derived NEOAEs do not display the highly synchronized dominant frequencies often seen in TEOAEs. This has been confirmed by examining the derived frequency responses for the two types of excitation. Conventional TEOAEs thus appear to measure a combination of two conceptually different processes, while NEOAEs measure just one.  相似文献   

6.
张树林  刘扬波  曾佳  王永良  孔祥燕  谢晓明 《物理学报》2012,61(2):20701-020701
本文利用磁屏蔽室和二阶轴向梯度计抑制环境磁场噪声, 建立了单通道脑磁探测系统, 并对不用声音频率下脑听觉激励磁场N100m响应进行了初步探测.结果显示, 1000 Hz音频和100 ms持续声音激励下, N100m峰值的典型强度约为0.4 pT.在低的声音频率激励下, N100m峰出现延时, 100 Hz 和1000 Hz之间的延时差别达到25 ms.相比于1 kHz特定频率的声音激励, 1—4 kHz 随机变频下的N100m峰幅度增强, 出现了数毫秒的延时.本研究为下一步利用软件梯度计进行多通道脑磁系统和听觉机理研究奠定了一定的基础.  相似文献   

7.
The potential for interactions between steady-state evoked responses to simultaneous auditory stimuli was investigated in two bottlenose dolphins (Tursiops truncatus). Three experiments were conducted using either a probe stimulus (probe condition) or a probe in the presence of a masker (probe-plus-masker condition). In the first experiment, the probe and masker were sinusoidal amplitude-modulated (SAM) tones. Probe and masker frequencies and masker level were manipulated to provide variable masking conditions. Probe frequencies were 31.7, 63.5, 100.8, and 127.0 kHz. The second experiment was identical to the first except only the 63.5 kHz probe was used and maskers were pure tones. For the third experiment, thresholds were measured for the probe and probe-plus-masker conditions using two techniques, one based on the lowest detectable response and the other based on a regression analysis. Results demonstrated localized masking effects where lower frequency maskers suppressed higher frequency probes and higher amplitude maskers produced a greater masking effect. The pattern of pure tone masking was nearly identical to SAM tone masking. The two threshold estimates were similar in low masking conditions, but in high masking conditions the lowest detectable response tended to overestimate thresholds while the regression-based analysis tended to underestimate thresholds.  相似文献   

8.
This report describes the extent to which ear-canal acoustic admittance and energy reflectance (YR) in human neonates (1) predict otoacoustic emission (OAE) levels and auditory brainstem response (ABR) latencies, and (2) classify OAE and ABR responses as present or absent. Analyses are reported on a subset of ears in which hearing screening measurements were obtained previously [Norton et al., Ear. Hear. 21, 348-356 (2000a)]. Tests on 1405 ears included YR, distortion-product OAEs, transient-evoked OAEs, and ABR. Principal components analysis reduced the 33 YR variables to 5-7 factors. OAE levels decreased and ABR latencies increased with increasing high-frequency energy reflectance. Up to 28% of the variance in OAE levels and 12% of the variance in ABR wave-V latencies were explained by these factors. Thus, the YR response indirectly encodes information on inter-ear variations in forward and reverse middle-ear transmission. The YR factors classify OAEs with an area under the relative operating characteristic (ROC) curve as high as 0.79, suggesting that middle-ear dysfunction is partly responsible for the inability to record OAEs in some ears. The YR factors classified ABR responses less well, with ROC areas of 0.64 for predicting wave-V latency and 0.56 for predicting Fsp.  相似文献   

9.
It is now undisputed that the best frequency (BF) of basal basilar-membrane (BM) sites shifts downwards as the stimulus level increases. The direction of the shift for apical sites is, by contrast, less well established. Auditory nerve studies suggest that the BF shifts in opposite directions for apical and basal BM sites with increasing stimulus level. This study attempts to determine if this is the case in humans. Psychophysical tuning curves (PTCs) were measured using forward masking for probe frequencies of 125, 250, 500, and 6000 Hz. The level of a masker tone required to just mask a fixed low-level probe tone was measured for different masker-probe time intervals. The duration of the intervals was adjusted as necessary to obtain PTCs for the widest possible range of masker levels. The BF was identified from function fits to the measured PTCs and it almost always decreased with increasing level. This result is inconsistent with most auditory-nerve observations obtained from other mammals. Several explanations are discussed, including that it may be erroneous to assume that low-frequency PTCs reflect the tuning of apical BM sites exclusively and that the inherent frequency response of the inner hair cell may account for the discrepancy.  相似文献   

10.
Transient-evoked stimulus-frequency otoacoustic emissions (SFOAEs), recorded using a nonlinear differential technique, and distortion-product otoacoustic emissions (DPOAEs) were measured in 17 normal-hearing and 10 hearing-impaired subjects using pairs of tone pips (pp), gated tones (gg), and for DPOAEs, continuous and gated tones (cg). Temporal envelopes of stimulus and OAE waveforms were obtained by narrow-band filtering at the stimulus or DP frequency. Mean SFOAE latencies in normal ears at 2.7 and 4.0 kHz decreased with increasing stimulus level and were larger at 4.0 kHz than latencies in impaired ears. Equivalent auditory filter bandwidths were calculated as a function of stimulus level from SFOAE latencies by assuming that cochlear transmission is minimum phase. DPOAE latencies varied less with level than SFOAE latencies. The ppDPOAEs often had two (or more) peaks separated in time with latencies consistent with model predictions for distortion and reflection components. Changes in ppDPOAE latency with level were sometimes explained by a shift in relative amplitudes of distortion and reflection components. The pp SFOAE SPL within the main spectral lobe of the pip stimulus was higher for normal ears in the higher-frequency half of the pip than the lower-frequency half, which is likely an effect of basilar membrane two-tone suppression.  相似文献   

11.
Stimulus-frequency otoacoustic emissions (SFOAEs) are typically derived as the difference in sound pressure in the ear canal with and without a suppressor tone added to the probe tone. A novel variation of this method applies a sinusoidal amplitude modulation (AM) to the suppressor tone, which causes the SFOAE to also be modulated. The AM-SFOAE can be separated from the probe frequency using spectral methods. AM-SFOAE measurements are described for four normal-hearing subjects using 6-Hz AM. Because the suppressor modulation is at a higher rate, the AM-SFOAE technique avoids the confounding influence of heartbeat, which also modulates the probe tone.  相似文献   

12.
In their recent article "Offset AP masker tuning curve and the FFT of the stimulus" [J. Acoust. Soc. Am. 84, 1354-1362 (1988)], Henry and Lewis demonstrated that the tuning curve obtained by the simultaneous masking of the whole nerve action potential (AP) could have two tips when the AP is generated at the offset of the envelope of a high-level probe. The primary tip falls below the probe frequency, whereas the secondary tip falls above the probe frequency. Curves obtained for the onset response with either forward or simultaneous masking did not show the secondary peak, nor did curves obtained for the offset response with forward masking. Henry and Lewis discussed various reasons for the secondary tip, but came to no conclusion as to the underlying mechanisms. Here, it is reasoned that the secondary tip of the offset curve can be simply explained by the generation within the cochlea of intermodulation distortion (IMD), which acts as a forward masker to the offset response. The IMD is dominated by the cubic component (2f1-f2) and arises from the interaction of the probe tone and the simultaneous masker. Finally, it is reasoned that the lower sideband of the frequency splatter present at probe offset is the primary stimulus for the evoked neural response under probe offset conditions. Thus the offset curve will always have a primary tip that is lower in frequency than that of the respective onset curve. These hypotheses are supported by single-fiber data.  相似文献   

13.
Measurements of otoacoustic emission (OAE) magnitude are often made at low signal/noise ratios (SNRs) where measurement noise generates bias and variability errors that have led to the misinterpretation of OAE data. To gain an understanding for these errors and their effects, a two part investigation was carried out. First, the nature of OAE measurement noise was investigated using human data from 50 stimulus-frequency OAE experiments involving medial olivocochlear reflex (MOCR) activation. The noise was found to be reasonably approximated by circular Gaussian noise. Furthermore, when bias errors were taken into account, measurement variability was not found to be affected by MOCR activation as had been previously reported. Second, to quantify the errors circular Gaussian noise produces for different methods of OAE magnitude estimation for distortion-product, stimulus-frequency, and spontaneous OAEs, simulated OAE measurements were analyzed via four different magnitude estimation methods and compared. At low SNRs (below -6 dB), estimators involving Rice probability density functions produced less biased estimates of OAE magnitudes than conventional estimation methods, and less total rms error-particularly for spontaneous OAEs. They also enabled the calculation of probability density functions for OAE magnitudes from experimental data.  相似文献   

14.
A number of single-frequency resonant modes in click evoked otoacoustic emissions (OAEs) was investigated. The OAE modes were identified by means of an adaptive approximation method based on the matching pursuit (MP) algorithm. The signals were decomposed into basic waveforms coming from a very large and redundant dictionary of Gabor functions. The study was performed on transiently evoked otoacoustic emissions (TEOAEs) from left and right ears of 108 subjects. The correspondence between waveforms found by the procedure and resonant modes was shown (both for simulated noisy data and for single-person TEOAEs). The decomposition of TEOAEs made distinction between short and long-lasting components possible. The number of main resonant modes was studied by means of different criteria and they all led to similar results, indicating that the main features of the signal are explained on average by 10 waveforms. The same number of resonant modes for the right ear accounted for more energy than for the left ear.  相似文献   

15.
Steady-state evoked potentials were measured from unanesthetized chinchillas both before and after carboplatin-induced selective inner hair cell loss. Recordings were made from both the inferior colliculus (IC) and the auditory cortex (AC). The steady-state potential was measured in the form of the envelope following response (EFR), obtained by presenting a two-tone stimulus (f1 = 2000 Hz; f2 = 2020, 2040, 2080, 2160, or 2320 Hz), and measuring the magnitude of the Fourier coefficient at the f2-f1 difference frequency. From the IC, precarboplatin, EFR amplitude vs difference tone frequency showed a bandpass pattern, with maximum amplitude at either 160 or 80 Hz, depending upon stimulus level. Postcarboplatin, the preferred difference frequency was 80 Hz for all stimulus levels. From the AC, EFR amplitude versus difference tone frequency also showed a bandpass pattern, with the maximum amplitude at 80 Hz both pre- and postcarboplatin. EFR amplitude from the IC was decreased for some conditions postcarboplatin, while the amplitude from the AC showed no significant change.  相似文献   

16.
Stimulus-frequency otoacoustic emissions (SFOAEs) have been measured in several different ways, including (1) nonlinear compression, (2) two-tone suppression, and (3) spectral smoothing. Each of the three methods exploits a different cochlear phenomenon or signal-processing technique to extract the emission. The compression method makes use of the compressive growth of emission amplitude relative to the linear growth of the stimulus. The emission is defined as the complex difference between ear-canal pressure measured at one intensity and the rescaled pressure measured at a higher intensity for which the emission is presumed negligible. The suppression method defines the SFOAE as the complex difference between the ear-canal pressure measured with and without a suppressor tone at a nearby frequency. The suppressor tone is presumed to substantially reduce or eliminate the emission. The spectral smoothing method involves convolving the complex ear-canal pressure spectrum with a smoothing function. The analysis exploits the differing latencies of stimulus and emission and is equivalent to windowing in the corresponding latency domain. Although the three methods are generally assumed to yield identical emissions, no equivalence has ever been established. This paper compares human SFOAEs measured with the three methods using procedures that control for temporal drifts, contamination of the calibration by evoked emissions, and other potential confounds. At low stimulus intensities, SFOAEs measured using all three methods are nearly identical. At higher intensities, limitations of the procedures contribute to small differences, although the general spectral shape and phase of the three SFOAEs remain similar. The near equivalence of SFOAEs measured by compression, suppression, and spectral smoothing indicates that SFOAE characteristics are not mere artifacts of measurement methodology.  相似文献   

17.
Middle and inner ears from human cadaver temporal bones were stimulated in the forward direction by an ear-canal sound source, and in the reverse direction by an inner-ear sound source. For each stimulus type, three variables were measured: (a) Pec--ear-canal pressure with a probe-tube microphone within 3 mm of the eardrum, (b) Vst--stapes velocity with a laser interferometer, and (c) Pv--vestibule pressure with a hydrophone. From these variables, the forward middle-ear pressure gain (M1), the cochlear input impedance (Zc), the reverse middle-ear pressure gain (M2), and the reverse middle-ear impedance (M3) are directly obtained for the first time from the same preparation. These measurements can be used to fully characterize the middle ear as a two-port system. Presently, the effect of the middle ear on otoacoustic emissions (OAEs) is quantified by calculating the roundtrip middle-ear pressure gain Gme(RT) as the product of M1 and M2. In the 2-6.8 kHz region, absolute value(Gme(RT)) decreases with a slope of -22 dB/oct, while OAEs (both click evoked and distortion products) tend to be independent of frequency; this suggests a steep slope in vestibule pressure from 2 kHz to at least 4 kHz for click evoked OAEs and to at least 6.8 kHz for distortion product OAEs. Contrary to common assumptions, measurements indicate that the emission generator mechanism is frequency dependent. Measurements are also used to estimate the reflectance of basally traveling waves at the stapes, and apically generated nonlinear reflections within the vestibule.  相似文献   

18.
Across-critical-band processing of amplitude-modulated tones   总被引:2,自引:0,他引:2  
Two experiments using two-tone sinusoidally amplitude-modulated stimuli were conducted to assess cross-channel effects in processing low-frequency amplitude modulation. In experiment I, listeners were asked to discriminate between two sets of two-tone amplitude-modulated complexes. In one set, the modulation phase of the lower frequency carrier tone was different from that of the upper frequency carrier tone. In the other stimulus set, both amplitude-modulated carriers had the same modulator phase. The amount of phase shift required to discriminate between the two stimulus sets was determined as a function of the separation between the two carriers, modulation depth, and modulation frequency. Listeners could discriminate a 50 degrees-60 degrees phase shift between the modulated envelopes for tones separated by more than a critical band. In experiment II, the modulation depth required to detect modulation of a probe carrier was measured in the presence of an amplitude-modulated masker. The threshold for detecting probe modulation was determined as a function of the separation between the masker and probe carriers, the phase difference between the masker and probe modulators, and masker modulation depth (in all conditions, the rate of probe and masker modulation was 10 Hz). The threshold for detecting probe modulation was raised substantially when the masker tone was also modulated. The results are consistent with theories suggesting that amplitude modulation helps form auditory objects from complex sound fields.  相似文献   

19.
In a companion paper [Brown et al., J. Acoust. Soc. Am. 88, 1385-1391 (1990)], a method for recording the electrically evoked whole-nerve action potential in human cochlear implant users was reported. The procedure for recording the response requires that two biphasic current pulses, a "masker" and a "probe," be presented at a rate and level sufficient to drive the auditory nerve into a refractory state. The present study was designed to assess the sensitivity of that recording technique to variations in stimulation parameters. The experiments described in this paper demonstrate that: (1) the EAP as recorded in the cat is triphasic and is defined by two negative peaks occurring at latencies of approximately 0.26 and 0.82 ms; (2) EAP amplitude is independent of the level of the masker stimulus for current levels equal to or greater than the current level of the probe stimulus; and (3) the time course of recovery of the EAP from the refractory state is stable over a range of both probe and masker current levels.  相似文献   

20.
Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its variation along the length of the cochlear partition. Although different data-processing strategies are known to yield different delay estimates and trends, their relative reliability has not been established. This paper uses in silico experiments to evaluate six methods for extracting delay trends from reflection-source otoacoustic emissions (OAEs). The six methods include both previously published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing) and are not recommended. In addition, since standing waves caused by multiple internal reflection can complicate the interpretation and compromise the application of OAE delays, this paper develops and evaluates two promising signal-processing strategies, the first based on time-frequency filtering using the continuous wavelet transform and the second on cepstral analysis, for separating the direct emission from its subsequent reflections. Altogether, the results help to resolve previous disagreements about the frequency dependence of human OAE delays and the sharpness of cochlear tuning while providing useful analysis methods for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号