首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is demonstrated that phosphorylated forms of beta-nitro alcohols provide an excellent means of entry into beta-(phosphatoxy)alkyl radicals on exposure to tributyltin hydride and AIBN in benzene at reflux. These radicals then undergo heterolytic cleavage of the phosphate group to yield alkene radical cation/phosphate anion contact ion pairs which are trapped intramolecularly in a tandem polar/radical crossover sequence involving radical ionic chain reactions by allylic and propargylic amines. The substitution pattern of the alkene radical cation dictates the cyclization mode, and this may be engineered to form fused ring systems by an initial exo-mode nucleophilic cyclization or bridged bicyclic systems when the nucleophilic attack takes place in the endo-mode.  相似文献   

2.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

3.
This study examines the chemoselectivity of alkoxy radical cyclizations onto silyl enol ethers compared to competing cyclizations, 1,5-hydrogen atom transfers (1,5-HATs), and β-fragmentations. Cyclization onto silyl enol ethers in a 5-exo mode is greatly preferred over cyclization onto a terminal alkene. The selectivity decreases when any alkyl substitution is present on the competing alkene radical acceptor. Alkoxy radical 5-exo cyclizations displayed excellent chemoselectivity over competing β-fragmentations. Alkoxy radical 5-exo cyclizations onto silyl enol ether also outcompeted 1,5-HATs, even for activated benzylic hydrogen atoms. In tetrahydropyran synthesis, where 1,5-HAT has plagued alkoxy radical cyclization methodologies, 6-exo cyclizations were the dominant mode of reactivity. β-Fragmentation still remains a challenge for tetrahydropyran synthesis when an aryl group is present in the β position.  相似文献   

4.
The reaction of enantiomerically enriched 2-methyl-2-nitro-3-(diphenylphosphatoxy)alkyl radicals with tributyltin hydride and AIBN in benzene at reflux results in the formation of alkene radical cation/anion pairs, which are trapped intramolecularly by amine nucleophiles, leading to pyrrolidine and piperidine systems with memory of stereochemistry. The scope and limitations of the system are explored with respect to nucleophile, leaving group, and substituents within the substrate backbone.  相似文献   

5.
Horner JH  Lal M  Newcomb M 《Organic letters》2006,8(24):5497-5500
The kinetics of radical heterolysis reactions, including rate constants for radical cation-anion contact ion pair formation, collapse of the contact pair back to the parent radical, and separation of the contact pair to a solvent-separated ion pair or free ions were obtained in several solvents for a beta-mesyloxy radical. Rate constants were determined from indirect kinetic studies using thiophenol as both a radical trapping agent via H-atom transfer and an alkene radical cation trapping agent via electron transfer. [reaction: see text].  相似文献   

6.
This review describes the results of our recent studies on the control of the regiochemistry of radical cyclizations. N-vinylic alpha-chloroacetamides generally cyclized in a 5-endo-trig manner to give five-membered lactams, whereas 4-exo-trig cyclization occurred when the cyclized radical intermediates were highly stabilized by an adjacent phenyl or phenylthio group to afford beta-lactams. The 5-exo or 6-exo cyclization of aryl radicals onto the alkenic bond of enamides could be shifted to the corresponding 6-endo or 7-endo mode of cyclization by a positional change of the carbonyl group of enamides. The 6-endo- and 7-endo-selective aryl radical cyclizations were applied to radical cascades for the synthesis of alkaloids such as phenanthroindolizidine, cephalotaxine skeleton, and lennoxamine. The 5-exo-trig cyclization of an alkyl radical onto the alkenyl bond of enamides could also be shifted to the 6-endo mode by a positional change of the carbonyl group of enamides. The 6-endo- selective cyclization was applied to the radical cascade to afford a cylindricine skeleton. Other examples of controlling the regiochemistry of radical cyclizations and their applications to the synthesis of natural products are also discussed.  相似文献   

7.
The transition states (TSs) of 5-endo-dig and 5-endo-trig anionic ring closures are the first unambiguous examples of nonpericyclic reactions with TSs stabilized by aromaticity. Their five-center, six-electron in-plane aromaticity is revealed by the diatropic dissected nucleus-independent chemical shifts, -24.1 and -13.7 ppm, respectively, resulting from the delocalization of the lone pair at the nucleophilic center, a σ CC bond, and an in-plane alkyne (or alkene) π bond. Other seemingly analogous exo and endo cyclization TSs do not have these features. A symmetry-enhanced combination of through-space and through-bond interactions explains the anomalous geometric, energetic, and electronic features of the 5-endo ring closure transition state. Anionic 5-endo cyclizations can be considered to be "aborted" [2,3]-sigmatropic shifts. The connection between anionic cyclizations and sigmatropic shifts offers new possibilities for the design and electronic control of anionic isomerizations.  相似文献   

8.
A new oxygen-centered radical cyclization onto silyl enol ethers has been developed and utilized for the synthesis of versatile siloxy-substituted tetrahydrofurans. The reactions display excellent chemoselectivity for cyclization onto the electron-rich silyl enol ether when competing terminal alkene cyclization, 1,5-hydrogen abstraction, and beta-fragmentation pathways are present. The increased chemoselectivity also allows for the synthesis of tetrahydropyrans, a challenging substrate class to access using oxygen-centered radical alkene cyclizations due to competing 1,5-hydrogen abstractions.  相似文献   

9.
(o-butenylhalobenzene)Cr(CO)(3) complexes were synthesized by diastereoselectve allylmetal additions to o-halo benzaldehyde complexes. The addition of allylZnBr proved particularly convenient and clean. The complexes undergo intramolecular Pd-catalyzed cyclizations (Heck reactions) without decomplexation and/or alkene isomerization. In complexes with a benzylic stereogenic center, the diastereoselectivity of the alkene carbopalladation is governed by the planar chirality of the complex rather than by the benzylic stereogenic center in the side chain. This reaction outcome can be rationalized by the geometry of the arene plane vs that of the Pd coordination plane in the transition step of the alkene carbopalladation step. An alternative cyclization procedure involves the generation of a Cr(CO)(3)-coordinated arene radical from the bromo and iodo complexes. Intramolecular aryl-radical cyclization affords indan complexes. The transition metal arene pi-bond remains intact during this process.  相似文献   

10.
Grant SW  Zhu K  Zhang Y  Castle SL 《Organic letters》2006,8(9):1867-1870
[reaction: see text] Radical cascades that feature a 7-exo acyl radical cyclization followed by a 6-exo or 5-exo alkyl radical cyclization proceed with very good yields and diastereoselectivities. Two stereocenters are created by the reaction, and a single isomeric product was obtained from each of the five substrates examined. The relative configurations of the products are consistent with cyclizations occurring via chairlike or pseudochairlike transition states.  相似文献   

11.
Ab initio calculations on the isomerization of butene and pentene radical cations indicate that, for all classical ion structures, the lowest barrier for a rearrangement to the most stable ion structure is below the dissociation limit. Isomerizations of linear butene radical cations to the isobutene structure take place via the CH3CC2H5·+ structure, whereas in the pentene case the connection between linear and branched ion structures proceeds via the 1,2-dimethylcyclopropane radical cation. From the results a qualitative model is derived which suggests that for larger alkene radical cations an isomerization to structures with four alkyl substituents on the double bond may be in close competition with dissociation.  相似文献   

12.
The scope of the segment-coupling Prins cyclization has been investigated. The method is outlined in Scheme 1 and involves esterification of a homoallylic alcohol (1), reductive acetylation to give the alpha-acetoxy ether (3), and cyclization on treatment with a Lewis acid to produce a tetrahydropyran (4). Alkene geometries dictate the product configurations, with E-alkenes leading to equatorial substituents and Z-alkenes leading to axial substituents (Table 1). Not unexpectedly, applying the method to allylic alcohols leads to fragmentation rather than a disfavored 5-endo-trig cyclization. Dienols in which one alkene is allylic and the other alkene is homoallylic cyclize efficiently and produce the tetrahydropyrans 49-54, Table 3. Dienols with two homoallylic alkenes cyclize with modest to high regioselectively, generating tetrahydropyrans 40-45, Table 2. The relative rates for cyclization decrease in the order of vinyl > Z-alkene > E-alkene > alkyne. The configurations of the products are consistent with cyclization via a chair conformation, Figure 1. The 2-oxonia Cope rearrangement may be a factor in the regioselectivity of diene cyclizations and in the erosion of stereoselectivity with Z-alkenes. This investigation establishes the stereoselectivity and regioselectivity for a number of synthetically useful segment-coupling Prins cyclizations.  相似文献   

13.
The cyclization of alkyllithium reagents onto methoxy alkenes has been investigated. The alkyllithium reagent was generated by reductive lithiation of an alkyl nitrile. In an unbiased substrate, a methoxy leaving group attached to a stereogenic secondary carbon atom led to the cyclization product with high optical purity. The configuration of the product demonstrated that the cyclization had proceeded with high syn-S(N)' selectivity. Previously we have shown that 2-lithiotetrahydropyran reagents cyclize to form spirocycles with the alkene cis to the pyran oxygen. Substrates were prepared to evaluate the importance of the configuration of the secondary allyl methyl ether against the alpha-alkoxy alkyllithium configuration. In the matched case (cyano acetal 38), a very selective cyclization ensued. In the mismatched case (cyano acetal 39), the spiro ether selectivity dominated. The syn-S(N)' selectivity overcame the normal E selectivity in the cyclization and accounted for the major product, Z-alkene 45. Thus the stereochemical preference in these alkyllithium cyclizations is dominated by the spiroether effect, followed by the syn-S(N)' selectivity and finally the preference for E-alkene formation.  相似文献   

14.
Stereocontrolled Mn-mediated addition of alkyl iodides to chiral N-acylhydrazones enables strategic C-C bond constructions at the stereogenic centers of chiral amines. Applying this strategy to quinine suggested complementary synthetic approaches to construct C-C bonds attached at the nitrogen-bearing stereogenic center using multifunctional alkyl iodides 6a-d as radical precursors, or using multifunctional chiral N-acylhydrazones 26a-d as radical acceptors. These were included among Mn-mediated radical additions of various alkyl iodides to a range of chiral N-acylhydrazone radical acceptors, leading to the discovery that pyridine and alkene functionalities are incompatible. In a revised strategy, these functionalities are avoided during the Mn-mediated radical addition of 6d to chiral N-acylhydrazone 22b, which generated a key C-C bond with complete stereochemical control at the chiral amine carbon of quinine. Subsequent elaboration included two sequential cyclizations to complete the azabicyclo[2.2.2]octane ring system. Group selectivity between two 2-iodoethyl groups during the second cyclization favored an undesired azabicyclo[3.2.1]octane ring system, an outcome that was found to be consistent with transition state calculations at the B3LYP/6-31G(d) level. Group differentiation at an earlier stage enabled an alternative regioconvergent pathway; this furnished the desired azabicyclo[2.2.2]octane ring system and afforded quincorine (21b), completing a formal synthesis of quinine.  相似文献   

15.
The mechanistic importance of HMPA and proton donors (methanol, 2-methyl-2-propanol, and 2,2,2-trifluoroethanol) on SmI2-initiated 5-exo-trig ketyl-olefin cyclizations has been examined using stopped-flow spectrophotometric studies. In the presence of HMPA, the rate order of proton donors was zero and product studies showed that they had no impact on the diastereoselectivity of the reaction. Conversely, reactions were first-order in HMPA, and the additive displayed saturation kinetics at high concentrations. These results were consistent with HMPA being involved in a rate-limiting step before cyclization, where coordination of the intermediate ketyl to the sterically congested Sm(III)HMPA both stabilizes the intermediate and inhibits cyclization. Liberation of the contact ion pair through displacement by an equivalent of HMPA provides a solvent-separated ion pair releasing the steric constraint to ketyl-olefin cyclization. The mechanism derived from rate studies shows that HMPA is important not only in increasing the reduction potential of Sm(II) but also in enhancing the inherent reactivity of the radical anion intermediate formed after electron transfer through conversion of a sterically congested contact ion pair to a solvent-separated ion pair. The mechanistic complexity of the SmI2-HMPA-initiated ketyl-olefin cyclization is driven by the high affinity of HMPA for Sm(III), and these results suggest that simple empirical models describing the role of HMPA in more complex systems are likely to be fraught with a high degree of uncertainty.  相似文献   

16.
17.
The effect of a halogen atom as a leaving group on Bu(3)SnH-mediated 5-endo-trig radical cyclization of N-(cyclohex-1-enyl) alpha-halo amides was examined. The cyclization of alpha-chloro amides occurred with a high degree of efficiency, whereas the corresponding alpha-iodo congeners gave only limited quantities of cyclization products. A detailed study revealed that these phenomena could be attributed to the initial conformations of alpha-halo amides. The cyclizing ability of alpha-iodo amides can be restored with Bu(3)SnCl or Bu(3)SnF as an additive. The cyclization of an alpha-iodo amide in the presence of Bu(3)SnF could be applied to a short-step synthesis of lycoranes featuring sequential 5-endo-trig and 6-endo-trig radical cyclizations.  相似文献   

18.
Acylsilanes with terminal alpha-stannyl bromide or xanthate functionalities are prepared. Alpha-stannyl radicals generated from these acylsilanes undergo intramolecular cyclizations to give cyclic silyl enol ethers regiospecifically. The radical processes involve radical cyclization, Brook rearrangement, and beta-fragmentation in sequence. A tributylstannyl group serves as the radical leaving group. The newly formed sigma-bond and pi-bond are located between the same two carbon atoms. This approach is limited to the formation of five-membered rings. In another route, omega-bromo-alpha-phenylsulfonylacylsilanes are synthesized. The radical cyclizations of these alpha-sulfonylacylsilanes also give cyclic silyl enol ethers. The phenylsulfonyl moiety is the radical leaving group in this system. Furthermore, the newly formed sigma-bond and pi-bond are located at adjacent positions sharing a single carbon atom. The latter approach is effective for both five- and six-membered ring formation.  相似文献   

19.
Free radical-mediated 5-exo-trig cyclizations of hepta-1,6-dienes incorporating allylsilane, alkyl and alkoxy analogues are modeled using correlated ab initio calculations. The structural, electronic and thermochemical properties of reactants, products and transition species involved in the key step of the radical cyclization process are analyzed and compared with those predicted by the Beckwith-Houk transition models. The product ratios are calculated from the Gibbs energy differences between the possible transition structures following the Curtin-Hammet principle and compared to experimental values.  相似文献   

20.
Various silylboranes, which were outfitted with a catecholborane moiety at one end and a (Me(3)Si)(3)Si moiety at the other end of a carbon chain, were prepared through the hydroboration of the corresponding unsaturated silanes. The C-centered radical species generated from these silylboranes efficiently cyclized to provide, through a 5-exo intramolecular homolytic substitution at the silicon center, the corresponding silacycle and a Me(3)Si radical that was subsequently trapped by sulfonyl acceptors. These cyclizations proceeded at unprecedented rates, due, in part, to a strong gem-dialkyl effect that was attributable to the presence of bulky substituents on a quaternary center located on the chain. In parallel, we designed arylsilylboranes that produced silyl radicals through a 1,5-hydrogen transfer. Such silyl radicals may be valuable radical chain carriers, for instance, in oximation reactions of alkyl halides. Finally, computational studies allowed calculation of activation barriers of the homolytic substitution step and additionally illustrated that the overall reaction mechanism involved a transition state in which the attacking carbon center, the central silicon atom, and the Me(3)Si leaving group were collinear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号