首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang W  Lai RY 《The Analyst》2011,136(1):134-139
Here we report the effect of passivating diluent chain length and sensor interrogation temperature on the electrochemical DNA (E-DNA) sensor's mismatch discrimination capability. Both stem-loop and linear probe-based E-DNA sensors were constructed with various diluents, including 6-mercapto-1-hexanol and longer chain hydroxyl-terminated alkanethiols. Contrary to previously reported results, we find that the E-DNA sensors work optimally in the presence of the longer chain diluents, signified by the enhanced % signal suppression observed upon target hybridization. Of note, the sensors' signaling efficiency maintains even when interrogated at an elevated temperature, permitting the use of stringent temperature conditions to improve sensor specificity. For example, a stem-loop E-DNA sensor fabricated with 8-mercapto-1-octanol, when employed at 47 °C, produces signal suppression of 79%, 35% and 1.6% for the perfect match, single-base mismatch, and 2-base mismatch DNA targets, respectively. In addition to the significant enhancement in sensor discrimination capacity, high temperature operation also improves hybridization kinetics. Our results also suggest that the stem-loop E-DNA sensors demonstrate better mismatch discrimination capability when compared to the linear probe system under the same experimental condition.  相似文献   

2.
E-DNA sensors are a reagentless, electrochemical oligonucleotide sensing platform based on a redox-tag modified, electrode-bound probe DNA. Because E-DNA signaling is linked to hybridization-linked changes in the dynamics of this probe, sensor performance is likely dependent on the nature of the self-assembled monolayer coating the electrode. We have investigated this question by characterizing the gain, specificity, response time and shelf-life of E-DNA sensors fabricated using a range of co-adsorbates, including both charged and neutral alkane thiols. We find that, among the thiols tested, the positively charged cysteamine gives rise to the largest and most rapid response to target and leads to significantly improved storage stability. The best mismatch specificity, however, is achieved with mercaptoethanesulfonic and mercaptoundecanol, presumably due to the destabilizing effects of, respectively, the negative charge and steric bulk of these co-adsorbates. These results demonstrate that a careful choice of co-adsorbate chemistry can lead to significant improvements in the performance of this broad class of electrochemical DNA sensors.  相似文献   

3.
In this work, we report an enzyme-based E-DNA sensor for the sequence-specific detection of nucleic acids. This DNA sensor employs a "stem-loop" DNA probe dually labeled with biotin and digoxigenin (DIG). The probe is immobilized at an avidin-modified electrode surface via the biotin-avidin bridge, and the DIG serves as an affinity tag for the enzyme binding. In the initial state of the sensor, the probe adopts the stem-loop structure, which shields DIG from being approached by a bulky horseradish peroxidase-linked-anti-DIG antibody (anti-DIG-HRP) due to the steric effect. After hybridization, the probe undergoes a significant conformational change, forcing DIG away from the electrode. As a result, the DIG label becomes accessible by the anti-DIG-HRP, and the target hybridization event can be sensitively transduced via the enzymatically amplified electrochemical current signal. By using this new strategy, we demonstrate that the prototype E-DNA sensor has been able to detect as low as femtomolar DNA targets with excellent differentiation ability for even single mismatches.  相似文献   

4.
We review the development of reagentless, electrochemical sensors for the sequence-specific detection of nucleic acids that are based on the target-induced folding or unfolding of electrode-bound oligonucleotides. These devices, which are sometimes termed E-DNA sensors, are comprised of an oligonucleotide probe modified on one terminus with a redox reporter and attached to an electrode at the other. Hybridization of this probe DNA to a target oligonucleotide influences the rate at which the redox reporter collides with the electrode, leading to a detectable change in redox current. Because all sensing elements of this method are strongly linked to the interrogating electrode, E-DNA sensors are label-free, operationally convenient and readily reusable. As E-DNA signaling is predicated on a binding-specific change in the dynamics of the probe DNA (rather than simply monitoring the adsorption of a target to the sensor surface) and because electroactive contaminants (interferents) are relatively rare, this class of sensors is notably resistant to false positives arising from the non-specific adsorption of interferents, and performs well even when challenged directly with blood serum, soil and other complex sample matrices. We review the history of and recent advances in this promising DNA and RNA detection approach.  相似文献   

5.
We have characterized the solution-phase and dry storage stability of electrochemical E-DNA sensors fabricated using mixed self-assembled monolayers (SAMs) composed of 6- or 11-carbon (C6 and C11, respectively) alpha,omega-thiol alcohols and the analogous C6- or C11-thiol-terminated stem-loop DNA probe. We find that the solution-phase and dry storage stability of C6-based E-DNA sensors are limited and poorly reproducible. The use of stabilizing agents bovine serum albumin plus either glucose or trehalose significantly improves the dry storage shelf life of such sensors: when using these preservatives, we observe only 7-9% sensor degradation after 1 month of storage in air at room temperature. In comparison, the stability of C11-based E-DNA sensors is significantly greater than that of the C6-based sensors; we observe only minor (5-8%) loss of signal upon storing these sensors for a week under ambient solution conditions or for more than a month in air in the presence of preservatives. Moreover, whereas the electron-transfer rate through C11 SAMs is slower than that observed for C6 SAMs, it is rapid enough to support good sensor performance. It thus appears that C11 SAMs provide a reasonable compromise between electron-transfer efficiency and sensor stability and are well suited for use in electronic DNA-sensing applications.  相似文献   

6.
This article summarizes the sensor performance of four electrochemical DNA sensors that exploit the recently developed displacement-replacement sensing motif. In the absence of the target, the capture probe is partially hybridized to the signaling probe at the distal end, positioning the redox label, methylene blue (MB), away from the electrode. In the presence of the target, the MB-modified signaling probe is released; one type of probe is capable of assuming a stem-loop probe (SLP) conformation, whereas the other type adopts a linear probe (LP) conformation. Independent of the sensor architecture, all four sensors showed “signal-on” sensor behavior. Unlike the previous report, here we focused on elucidating the effect of the redox label tether length and flexibility on sensor sensitivity, specificity, selectivity, and reusability. For both SLP and LP sensors, the limit of detection was 10 pM for sensors fabricated using a signaling probe with three extra thymine (T3) bases linked to the MB label. A limit of detection of 100 pM was determined for sensors fabricated using a signaling probe with five extra thymine (T5) bases. The linear dynamic range was between 10 pM and 100 nM for the T3 sensors, and between 100 pM and 100 nM for the T5 sensors. When compared to the LP sensors, the SLP sensors showed higher signal enhancement in the presence of the full-complement target. More importantly, the SLP-T5 sensor was found to be highly specific; it is capable of discriminating between the full complement and single-base mismatch targets even when employed in undiluted blood serum. Overall, these results highlight the advantages of using oligo-T(s) as a tunable linker to control flexibility of the tethered redox label, so as to achieve the desired sensor response.  相似文献   

7.
Here we systematically characterized the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors using alternating current voltammetry (ACV) and cyclic voltammetry (CV), with the goal of generating the set of operational criteria that best suits each sensor architecture, in addition to elucidating the signaling mechanism behind these sensors. Although the LP sensor shows slightly better % signal suppression (SS) upon hybridization with the perfect match target at 10 Hz, our frequency-dependent study suggests that it shows optimal % SS only in a very limited AC frequency range. Similar results are observed in CV studies in which the LP sensor, when compared to the SLP sensor, displays a narrower range of voltammetric scan rates where the optimal % SS can be achieved. More importantly, the difference between the two sensors' performance is particularly pronounced if the change in integrated charge (Q) upon target hybridization, rather than the peak current (I), is measured in CV. The temperature-dependent study further highlights the differences between the two sensors, where the LP sensor, owing to the flexible linear probe architecture, is more readily perturbed by temperature changes. Both SLP and LP sensors, however, show a loss of % SS when operated at elevated temperatures, despite the significant improvement in the hybridization kinetics. In conjunction with the ACV, CV, and temperature-dependent studies, the electron-transfer kinetics study provides further evidence in support of the proposed signaling mechanism of these two sensors, in which the SLP sensor's signaling efficiency and sensor performance is directly linked to the hybridization-induced conformational change in the redox-labeled probe, whereas the performance of the LP sensor relies on the hybridization-induced change in probe dynamics.  相似文献   

8.
9.
Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications.  相似文献   

10.
11.
基于特殊DNA序列的构型变化的电化学生物传感器是一种高灵敏、高特异性的生物分析方法.固定在电极表面的特殊DNA探针(茎环、核酸适配体、四聚体等)因为目标物质的结合而发生构型变化,从而产生可检测的电化学信号,这种策略操作简便而且特异性强,引起了研究者的广泛关注.本文总结了目前基于基因构型变化的电化学生物传感器的发展历程.  相似文献   

12.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


13.
以三分子亚甲基蓝(MB)标记适体探针为分子识别元件,构建了一种卡那霉素生物传感器.该传感器采用目标物诱导探针构型变化的信号转导机制.以Au-S化学法将适体探针自组装于金电极表面形成稳定的单分子层传感界面,利用交流伏安法和循环伏安法考察了传感过程的基础电化学行为和传感器分析性能.在优化条件下,相比于单分子MB标记,该传感...  相似文献   

14.
DNA-PEG-DNA triblock macromolecules for reagentless DNA detection   总被引:1,自引:0,他引:1  
The sandwich assay is the most common design for electrochemical DNA sensors. This assay consists of three individual DNA components: an immobilized capture strand, a target strand, and a probe strand containing a redox-active reporter group. We report a simplified DNA assay where two strands of ssDNA, the capture and probe strands, are linked together via a flexible poly(ethylene glycol) (PEG) spacer forming an ABA triblock macromolecule. We have developed an electrochemical assay where the detection signal arises as a consequence of a large structural change induced upon hybridization with target DNA. In this system, the DNA-PEG-DNA macromolecule folds or wraps around the target DNA, bringing the ferrocene probe in close proximity to the electrode, affording an electrochemical response.  相似文献   

15.
This communication reports on a new electrochemical method to detect the hybridization specificity by using host–guest recognition technique. A hairpin DNA with dabcyl-labeled at its 3′ and NH2 group at 5′ terminal was combined with CdS nanoparticle to construct a double-labeled probe (DLP), which could selectively hybridize with its target DNA in homogeneous solution. A β-CD modified Poly(N-acetylaniline) glassy carbon electrode was used for capturing the dabcyl label in DLP. When without binding with target DNA, the DLP kept its stem-loop structure which shielded the dabcyl molecule due to the loop of the hairpin DNA and CdS nanoparticle blocking dabcyl enter into the cavity of these β-CD molecules on the electrode. However, in present of complementary sequence, the target-binding DLP was incorporated into double stranded DNA, causing the DLP’s loop-stem structure opened and then the dabcyl was easily captured by the β-CD modified electrode. During electrochemical measurement, the signal from the dissolved Cd2+ was used for target DNA quantitative analysis.  相似文献   

16.
《Electroanalysis》2017,29(2):409-414
Electrochemistry offers sensitivity, selectivity and low cost for fabrication of sensors capable of detection of selected DNA targets or mutated genes associated with human disease. In this work, we have developed a novel label‐free, indicator‐free strategy of electrochemical DNA sensor based on Fe3O4 nanoparticles/reduced graphene oxide (Fe3O4/r‐GO) nanocomposite modified electrode. By using Fe3O4/r‐GO nanocomposite as a substrate to immobilize probe DNA and subsequent hybridization with target sequence to form dsDNA, a great signal amplification was achieved through measuring changes in DPV peak current of underlying Fe(II)/Fe(III) redox system. With the remarkable attomolar sensitivity and high specificity and at the same time, great simplicity, the proposed strategy may find great applications in different DNA assay fields.  相似文献   

17.
A competitor‐switched electrochemical sensor based on a generic displacement strategy was designed for DNA detection. In this strategy, an unmodified single‐stranded DNA (cDNA) completely complementary to the target DNA served as the molecular recognition element, while a hairpin DNA (hDNA) labeled with a ferrocene (Fc) and a thiol group at its terminals served as both the competitor element and the probe. This electrochemical sensor was fabricated by self‐assembling a dsDNA onto a gold electrode surface. The dsDNA was pre‐formed through the hybridization of Fc‐labeled hDNA and cDNA with their part complementary sequences. Initially, the labeled ferrocene in the dsDNA was far from surface of the electrode, the electrochemical sensor exhibited a "switch‐off" mode due to unfavorable electron transfer of Fc label. However, in the presence of target DNA, cDNA was released from hDNA by target DNA, the hairpin‐open hDNA restored its original hairpin structure and the ferrocene approached onto the electrode surface, thus the electrochemical sensor exhibited a "switch‐on" mode accompanying with a change in the current response. The experimental results showed that as low as 4.4×10−10 mol/L target DNA could be distinguishingly detected, and this method had obvious advantages such as facile operation, low cost and reagentless procedure.  相似文献   

18.
Motivated by the potential of electrochemical techniques to analyze hybridization events fast and in a simple and cost‐effective way we present here a detection system allowing a parallel electrochemical DNA analysis. For this purpose different probe DNA strands have been immobilized on one electrode. By the use of two different target DNA sequences, both marked with the redox active methylene blue, we can show that hybridization with the complementary probe sh“NA strands can occur without steric hindrance. Each target has been recognized down to 3nM with a very high specificity of the sensor. In addition, we can detect two different ssDNA targets labeled with different redox active molecules, methylene blue and ferrocene, on one sensor surface simultaneously.  相似文献   

19.
We herein constructed a sensor that converts target DNA hybridization‐induced conformational transformation of the probe DNA to electrochemical response based on host‐guest recognition and nanoparticle label. In the sensor, the hairpin DNA terminal‐labeled with 4‐((4‐(dimethylamino)phenyl)azo)benzoic acid (dabcyl) and thiol group was immobilized on Au electrode surface as the probe DNA by Au‐S bond, and the CdS nanoparticles surface‐modified with β‐cyclodextrins (CdS‐CDs) were employed as electrochemical signal provider and host‐guest recognition element. Initially, the probe DNA immobilized on electrode kept the stem‐loop configuration, which shielded dabcyl from docking with the CdS‐CDs in solution due to the steric effect. After target hybridization, the probe DNA underwent a significant conformational change, which forced dabcyl away from the electrode. As a result, formerly‐shielded dabcyl became accessible to host‐guest recognition between β‐cyclodextrin (β‐CD) and dabcyl, thus the target hybridization event could be sensitively transduced to electrochemical signal provided by CdS‐CDs. This host‐guest recognition‐based electrochemical sensor has been able to detect as low as picomolar DNA target with excellent differentiation ability for even single mismatch.  相似文献   

20.
With the help of the interaction mode of capture probe-target-signal probe (CP-T-SP), an electrochemical sensing method based on the synergism strategy of dual-hybridized signaling probes modified with 6 MB (methylene blue), background suppression and large surface area Au electrode is developed for the detection of Streptococcus pneumoniae (S. pneumoniae) Lyt-1 gene sequence. The proposed sensor features a very low detection limit (LOD) of ∼0.5 fM for the target. This method also exhibits highly versatility and can apply to the construction of other sensors for the analysis of similar designated pathogenic bacteria gene sequence (PBGS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号