首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The paper gives some solvability conditions of the Dirichlet problem for the second order elliptic equation $$ - div(A(x)\nabla u) + (\bar b(x),\nabla u) - div(\bar c(x)u) + d(x)u = f(x) - divF(x),x \in Q,u|_{\partial Q} = u_0 \in L_2 (\partial Q) $$ in bounded domain Q ? R n (n ≥ 2) with smooth boundary ?QC 1. In particular, it is proved that if the homogeneous problem has only the trivial solution, then for any u 0L 2(?Q) and f, F from the corresponding functional spaces the solution of the non-homogeneous problem exists, from Gushchin’s space $ C_{n - 1} (\bar Q) $ and the following inequality is true: $$ \begin{gathered} \left\| u \right\|_{C_{n - 1} (\bar Q)}^2 + \mathop \smallint \limits_Q r\left| {\nabla u} \right|^2 dx \leqslant \hfill \\ \leqslant C\left( {\left\| {u_0 } \right\|_{L_2 (\partial Q)}^2 + \mathop \smallint \limits_Q r^3 (1 + |\ln r|)^{3/2} f^2 dx + \mathop \smallint \limits_Q r(1 + |\ln r|)^{3/2} |F|^2 dx} \right) \hfill \\ \end{gathered} $$ where r(x) is the distance from a point xQ to the boundary ?Q and the constant C does not depend on u 0, f and F.  相似文献   

2.
Consider the stationary motion of an incompressible Navier–Stokes fluid around a rotating body $ \mathcal{K} = \mathbb{R}^3 \, \backslash \, {\Omega}$ which is also moving in the direction of the axis of rotation. We assume that the translational and angular velocities U, ω are constant and the external force is given by f = div F. Then the motion is described by a variant of the stationary Navier–Stokes equations on the exterior domain Ω for the unknown velocity u and pressure p, with U, ω, F being the data. We first prove the existence of at least one solution (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega)}$ and ${u \in L_3, \infty (\Omega)}$ under the smallness condition on ${|U| + |\omega| + ||F||_{L_{3/2, \infty} (\Omega)}}$ . Then the uniqueness is shown for solutions (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}$ and ${u \in L_{3, \infty} (\Omega) \cap L_{q*, r} (\Omega)}$ provided that 3/2 <? q <? 3 and ${{F \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}}$ . Here L q,r (Ω) denotes the well-known Lorentz space and q* =? 3q /(3 ? q) is the Sobolev exponent to q.  相似文献   

3.
We show that entire transcendental functions f satisfying $\log M(r,f) = o(\log ^2 r),r \to \infty (M(r,f): = \mathop {\max }\limits_{|z| = r} |f(z)|)$ necessarily have growth irregularity, which increases as the growth diminishes. In particular, if 1 < p < 2, then the asymptotics $\log M(r,f) = \log ^p r + o(\log ^{2 - p} r),r \to \infty ,$ , is impossible. It becomes possible if “o” is replaced by “O.”  相似文献   

4.
We derive the inequality $$\int_\mathbb{R}M(|f'(x)|h(f(x))) dx\leq C(M,h)\int_\mathbb{R}M\left({\sqrt{|f''(x)\tau_h(f(x))|}\cdot h(f(x))}\right)dx$$ with a constant C(M, h) independent of f, where f belongs locally to the Sobolev space ${W^{2,1}(\mathbb{R})}$ and f′ has compact support. Here M is an arbitrary N-function satisfying certain assumptions, h is a given function and ${\tau_h(\cdot)}$ is its given transform independent of M. When M(λ) =  λ p and ${h \equiv 1}$ we retrieve the well-known inequality ${\int_\mathbb{R}|f'(x)|^{p}dx \leq (\sqrt{p - 1})^{p}\int_\mathbb{R}(\sqrt{|f''(x) f(x)|})^{p}dx}$ . We apply our inequality to obtain some generalizations of capacitary estimates and isoperimetric inequalities due to Maz’ya (1985).  相似文献   

5.
We study subelliptic biharmonic maps, i.e., smooth maps ?:MN from a compact strictly pseudoconvex CR manifold M into a Riemannian manifold N which are critical points of the energy functional $E_{2,b} (\phi ) = \frac{1}{2} \int_{M} \| \tau_{b} (\phi ) \|^{2} \theta \wedge (d \theta)^{n}$ . We show that ?:MN is a subelliptic biharmonic map if and only if its vertical lift ?°π:C(M)→N to the (total space of the) canonical circle bundle $S^{1} \to C(M) \stackrel{\pi}{\longrightarrow} M$ is a biharmonic map with respect to the Fefferman metric F θ on C(M).  相似文献   

6.
We consider weak solutions to nonlinear elliptic systems in a W 1,p -setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere ${\mathcal{C}^{\alpha}}$ -regularity and global ${\mathcal{C}^{\alpha}}$ -estimates for the solutions. These structure conditions cover variational integrals like ${\int F(\nabla u)\; dx}$ with potential ${F(\nabla u):=\tilde F (Q_1(\nabla u),\ldots, Q_N(\nabla u))}$ and positively definite quadratic forms in ${\nabla u}$ defined as ${Q_i(\nabla u)=\sum_{\alpha \beta} a_i^{\alpha \beta} \nabla u^\alpha \cdot \nabla u^\beta}$ . A simple example consists in ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{2}} + |\xi_2|^{\frac{p}{2}}}$ or ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{4}}|\xi_2|^{\frac{p}{4}}}$ . Since the Q i need not to be linearly dependent our result covers a class of nondiagonal, possibly nonmonotone elliptic systems. The proof uses a new weighted norm technique with singular weights in an L p -setting.  相似文献   

7.
Let ${U \subset \mathbb{R}^{N}}$ be a neighbourhood of the origin and a function ${F:U\rightarrow U}$ be of class C r , r ≥ 2, F(0) = 0. Denote by F n the n-th iterate of F and let ${0<|s_1|\leq \cdots \leq|s_N| <1 }$ , where ${s_1, \ldots , s_N}$ are the eigenvalues of dF(0). Assume that the Schröder equation ${\varphi(F(x))=S\varphi(x)}$ , where S: = dF(0) has a C 2 solution φ such that dφ(0) = id. If ${\frac{log|s_1|}{log|s_N|} <2 }$ then the sequence {S ?n F n (x)} converges for every point x from the basin of attraction of F to a C 2 solution φ of (1). If ${2\leq\frac{log|s_1|}{log|s_N|} }$ then this sequence can be diverging. In this case we give some sufficient conditions for the convergence and divergence of the sequence {S ?n F n (x)}. Moreover, we show that if F is of class C r and ${r>\big[\frac{log|s_1|}{log|s_N|} \big ]:=p \geq 2}$ then every C r solution of the Schröder equation such that dφ(0) = id is given by the formula $$\begin{array}{ll}\varphi (x)={\lim\limits_{n \rightarrow \infty}} (S^{-n}F^n(x) + {\sum\limits _{k=2}^{p}} S^{-n}L_k (F^n(x))),\end{array}$$ where ${L_k:\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}}$ are some homogeneous polynomials of degree k, which are determined by the differentials d (j) F(0) for 1 < j ≤  p.  相似文献   

8.
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation $$\left \{\begin{array}{ll} -\Delta_p u + u = f \qquad {\rm in} \,\Omega,\\ \frac{\partial u}{\partial \nu} = 0 \qquad \qquad \,\,\,\,\,\,\,\,\,\, {\rm on} \,\partial \Omega, \end{array}\right.$$ when ${f \in L^q(\Omega), p > 2}$ and q ≥ 2. If u is a weak solution in ${W^{1, p}(\Omega)}$ , we obtain estimates for u in the Nikolskii space ${\mathcal{N}^{1+2/r,r}(\Omega)}$ , where r = q(p ? 2) + 2, in terms of the L q norm of f. In particular, due to imbedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that ${\|u\|^r_{W^{1 + 2/r - \epsilon, r}(\Omega)} \leq C(\|f\|_{L^q(\Omega)}^q + \| f\|^{r}_{L^q(\Omega)} + \|f\|^{2r/p}_{L^q(\Omega)})}$ for every ${\epsilon > 0}$ sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in ${W^{1,r}(\Omega)}$ .  相似文献   

9.
Let M be an even dimensional compact smooth manifold admitting an almost complex structure. Let ${{(\lambda, \mu)} \in \mathbb{R}^2 - (0,0)}$ . We discuss the critical points of the functional ${\mathcal {F}_{\lambda, \mu} (J, g) = \int_M (\lambda \tau + \mu \tau^* ) dv_g}$ on the space of all almost Hermitian structures ${\mathcal{AH}(M)}$ on M and its subspace ${{\mathcal{AH}_{c}(M)}}$ with a certain positive constant c, where τ and τ * are the scalar curvature and the *-scalar curvature of (J, g), respectively. Further, we provide some examples illustrating our arguments.  相似文献   

10.
In this article, we study the topology of real analytic germs ${F \colon (\mathbb{C}^3,0) \to (\mathbb{C},0)}$ given by ${F(x,y,z)=\overline{xy}(x^p+y^q)+z^r}$ with ${p,q,r \in \mathbb{N}, p,q,r \geq 2}$ and (p, q)?=?1. Such a germ gives rise to a Milnor fibration ${\frac{F}{\mid F \mid}\colon \mathbb{S}^5\setminus L_F \to \mathbb{S}^1}$ . We describe the link L F as a Seifert manifold and we show that in many cases the open-book decomposition of ${\mathbb{S}^5}$ given by the Milnor fibration of F cannot come from the Milnor fibration of a complex singularity in ${\mathbb{C}^3}$ .  相似文献   

11.
Let \({K,M,N : \mathbb{R}^{2} \rightarrow \mathbb{R}}\) be translative functions. Then K is invariant with respect to the mapping \({(M,N) : \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}}\) if and only if the functions \({h = K(\cdot, 0), f = M(\cdot, 0), g = N(\cdot, 0)}\) satisfy the functional equation $$h(x) = h(f(x) - g(x)) + g(x),\,\, x\in \mathbb{R}.$$ If K, M, N are means, then h(0) =  f(0) =  g(0) = 0. The formal power solutions and analytic solutions of this functional equation, satisfying these initial conditions, are considered.  相似文献   

12.
13.
For a holomorphic proper map F from the ball $\mathbb{B}^{n+1}$ into $\mathbb{B}^{N+1}$ that is C 3 smooth up to the boundary, the image $M=F(\partial\mathbb{B}^{n})$ is an immersed CR submanifold in the sphere $\partial \mathbb{B}^{N+1}$ on which some second fundamental forms II M and $\mathit{II}^{CR}_{M}$ can be defined. It is shown that when 4??n+1<N+1??4n?3, F is linear fractional if and only if $\mathit{II}_{M} - \mathit{II}_{M}^{CR} \equiv 0$ .  相似文献   

14.
We obtain Hardy type inequalities $$\int_0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int_0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int_0^\infty {M\left( {\left| {u'\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }$$ and their Orlicz-norm counterparts $$\left\| {\omega u} \right\|_{L^M (\mathbb{R}_ + ,\rho )} \leqslant \tilde C_1 \left\| u \right\|_{L^M (\mathbb{R}_ + ,\rho )} + \tilde C_2 \left\| {u'} \right\|_{L^M (\mathbb{R}_ + ,\rho )} ,$$ with an N-function M, power, power-logarithmic and power-exponential weights ??, ??, holding on suitable dilation invariant supersets of C 0 ?? (?+). Maximal sets of admissible functions u are described. This paper is based on authors?? earlier abstract results and applies them to particular classes of weights.  相似文献   

15.
We prove \(\left\| F \right\|_{2,\Omega } \leqslant c({\rm T} \Omega )\left\| f \right\|_{A{}_T} \) , whereF is the Fourier transform off,||F||2,Ω is theL 2-norm ofF on \([ - \Omega ,\Omega ],\left\| f \right\|_{A{}_T} \) is the absolutely convergent Fourier series norm for 2T-periodic functions, and $$c(T\Omega ) = (\frac{1}{\pi }\int\limits_{ - T\Omega }^{T\Omega } {\frac{{\sin ^2 \gamma }}{{\gamma ^2 }}d\gamma } )^{1/2} $$ Analogous inequalities, depending on prolate spheroidal wave functions, are more difficult to prove and their constants are less explicit.  相似文献   

16.
Let Y n denote the Gromov-Hausdorff limit $M^{n}_{i}\stackrel{d_{\mathrm{GH}}}{\longrightarrow} Y^{n}$ of v-noncollapsed Riemannian manifolds with ${\mathrm{Ric}}_{M^{n}_{i}}\geq-(n-1)$ . The singular set $\mathcal {S}\subset Y$ has a stratification $\mathcal {S}^{0}\subset \mathcal {S}^{1}\subset\cdots\subset \mathcal {S}$ , where $y\in \mathcal {S}^{k}$ if no tangent cone at y splits off a factor ? k+1 isometrically. Here, we define for all η>0, 0<r≤1, the k-th effective singular stratum $\mathcal {S}^{k}_{\eta,r}$ satisfying $\bigcup_{\eta}\bigcap_{r} \,\mathcal {S}^{k}_{\eta,r}= \mathcal {S}^{k}$ . Sharpening the known Hausdorff dimension bound $\dim\, \mathcal {S}^{k}\leq k$ , we prove that for all y, the volume of the r-tubular neighborhood of $\mathcal {S}^{k}_{\eta,r}$ satisfies ${\mathrm {Vol}}(T_{r}(\mathcal {S}^{k}_{\eta,r})\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},\eta)r^{n-k-\eta}$ . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let $\mathcal {B}_{r}$ denote the set of points at which the C 2-harmonic radius is ≤r. If also the $M^{n}_{i}$ are Kähler-Einstein with L 2 curvature bound, $\| Rm\|_{L_{2}}\leq C$ , then ${\mathrm {Vol}}( \mathcal {B}_{r}\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},C)r^{4}$ for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the $M^{n}_{i}$ , we obtain a slightly weaker volume bound on $\mathcal {B}_{r}$ which yields an a priori L p curvature bound for all p<2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.  相似文献   

17.
Let ${\mathcal L(r) = \sum_{n=0}^\infty a_nr^{\lambda_n}}$ be a lacunary series converging for 0 <  r < 1, with coefficients in a quasinormed space. It is proved that $$\int_0^1 F(1-r,\|\mathcal L(r)\|)(1-r)^{-1}\,{\rm d}r < \infty $$ if and only if $$ \sum_{n=0}^\infty F(1/\lambda_n,\|a_n\|) < \infty, $$ where F is a “normal function” of two variables. In the case when p ≥ 1 and F(x, y) =  x y p , this reduces to a theorem of Gurariy and Matsaev. As an application we prove that if ${f(r\zeta) = \sum_{n=0}^\infty r^{\lambda_n}f_{\lambda_n}(\zeta)}$ is a function harmonic in the unit ball of ${\mathbb R^N,}$ then $$\int_0^1M_p^q(r,f)(1-r)^{q\alpha-1} \,{\rm d}r <\infty\quad (p,\,q,\,\alpha >0 ) $$ if and only if $$\sum_{n=0}^\infty \|f_{\lambda_n} \|^q_{L^p(\partial B_N)}(1/\lambda_n)^{q\alpha} <\infty. $$   相似文献   

18.
We consider two dimensional surfaces ${X : \Omega\to\mathbb R^{n+2}, \Omega\subset \mathbb C, w=u+iv\mapsto X(w)}$ with arbitrary codimension n and prove a barrier principle for strong (possibly branched) subsolutions ${X\in C^1(\Omega, \mathbb {R}^{n+2})\cap H_{2,{\rm loc}}^2(\Omega,\mathbb R^{n+2})}$ of the integral inequality $$\int_{\Omega} \Big\lbrace \langle \nabla X, \nabla \varphi\rangle +2W \sum_{k=1}^n H_k \langle N_k,\varphi \rangle \Big\rbrace \; dudv\ge 0$$ with mean curvature functions (H k ) k=1,...,n which lie locally on one side of a supporting hypersurface S. We show under suitable assumption on the 2-mean curvature of the supporting surface S that X is locally contained in S. This generalizes a corresponding result for surfaces in ${\mathbb R^3}$ , cf. (Dierkes et al., Regularity of Minimal Surfaces, §4.4, 2010).  相似文献   

19.
We study Levi harmonic maps, i.e., C solutions f:MM′ to \(\tau_{\mathcal{H}} (f) \equiv \operatorname{trace}_{g} ( \varPi_{\mathcal{H}}\beta_{f} ) = 0\) , where (M,η,g) is an (almost) contact (semi) Riemannian manifold, M′ is a (semi) Riemannian manifold, β f is the second fundamental form of f, and \(\varPi_{\mathcal{H}} \beta_{f}\) is the restriction of β f to the Levi distribution \({\mathcal{H}} = \operatorname{Ker}(\eta)\) . Many examples are exhibited, e.g., the Hopf vector field on the unit sphere S 2n+1, immersions of Brieskorn spheres, and the geodesic flow of the tangent sphere bundle over a Riemannian manifold of constant curvature 1 are Levi harmonic maps. A CR map f of contact (semi) Riemannian manifolds (with spacelike Reeb fields) is pseudoharmonic if and only if f is Levi harmonic. We give a variational interpretation of Levi harmonicity. Any Levi harmonic morphism is shown to be a Levi harmonic map.  相似文献   

20.
In this paper, we study the nonhomogeneous n-harmonic equation $$-{\rm div}\,(|{\nabla} u|^{n-2}{\nabla} u)=f$$ in domains ${\Omega\subset {\mathbb {R}^n}}$ (n?≥?2), where ${f\in W^{-1,\frac{n}{n-1}}(\Omega)}$ . We derive a sharp condition to guarantee the continuity of solutions u. In particular, we show that when n?≥ 3, the condition that, for some ${\epsilon >0 ,}$ f belongs to $${\mathfrak{L}}({\rm log}\,{\mathfrak{L}})^{n-1}({\rm log}\,{\rm log}\,{\mathfrak{L}})^{n-2}\cdots({\rm log}\cdots{\rm log}\,{\mathfrak{L}})^{n-2}({\rm log}\cdots{\rm log}\,{\mathfrak{L}})^{n-2+\epsilon}(\Omega)$$ is sufficient for continuity of u, but not for ${\epsilon=0}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号