首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positively-charged gold nanoparticles can effectively differentiate long DNA and fragmented DNA, thus providing a simple and visual approach to colorimetric detection of nuclease activity.  相似文献   

2.
Amyloid peptide (Aβ) is found in the brain and blood of both healthy and diseased individuals alike. However, upon secondary structure transformation to a β-sheet dominated conformation, the protein aggregates. These aggregates accumulate to form neuritic plaques that are implicated in the pathogenesis of Alzheimer's disease. Gold nanoparticles are excellent photon-thermal energy converters. The extinction coefficient of the surface plasmon band of gold nanoparticles is very large when compared to typical organic dyes. In this study, gold nanoparticle–Aβ conjugates were prepared and the photothermal ablation of amyloid peptide aggregates by laser irradiation was studied. Monofunctional gold nanoparticles were prepared using a recently reported solid phase modification method and then coupled to fragments of Aβ peptide, namely Aβ(31–35) and Aβ(25–35). The conjugates were then mixed with Aβ fragments in solution. The aggregated peptide formation was studied by a series of spectroscopic and microscopic techniques. The peptide aggregates were then irradiated by a continuous laser. With gold nanoparticle–Aβ conjugates present the aggregates were destroyed by photothermal ablation. Gold nanoparticles without Aβ conjugation were not incorporated into the aggregates and when irradiated did not result in photothermal ablation. With gold nanoparticle–Aβ conjugates the ablation was selective to the site of irradiation and minimal damage was observed as a result of thermal diffusion. In addition to the application of photoablation to a protein-based sample the nanoparticles and the chemistry involved provide an easily monofunctionalized photothermal material for the biological conjugation.  相似文献   

3.
The hepatotoxic microcystins, especially microcystin?CLR (MC?CLR), are causing serious problems to public health and fisheries. We describe here a label-free amperometric immunosensor for rapid determination of MC?CLR in water sample. The sensor was prepared by immobilizing antibody on a gold electrode coated with L-cysteine-modified gold nanoparticles. The stepwise self-assembly of the immunosensor was monitored and characterized by means of electrochemical impedance spectroscopy and differential pulse voltammetry. A 0.60?mmol L?1 solution of hydroquinone was used as the electron mediator. The immunosensor was incubated with MC?CLR at 25?°C for 20?min, upon which the differential pulse voltammetric current changed linearly over the concentration range from 0.05 to 15.00???g L?1, with a detection limit of 20?ng L?1. The developed biosensor was used to determine MC?CLR in spiked crude algae samples. The recovery was in the range from 95.6 to 105%. This method is simple, economical and efficient, this making it potentially suitable for field analysis of MC-LR in crude algae and water samples.
Figure
The present investigation combines SAM monolayer with gold nanoparticles monolayer to prepare a stable film to immobilize the antibody, and takes hydroquinone as electron mediator, establishes a miniature, economic, compatible and label-free amperometric immunosensor for the quick detection of MC-LR.  相似文献   

4.
5.
6.
核酸修饰的金纳米粒子用于分光光度法检测卡那霉素   总被引:1,自引:0,他引:1  
建立了一种基于核酸修饰的金纳米粒子(Au NPs)检测卡那霉素的方法。该方法利用卡那霉素与适配体的特异性结合,游离适配体的部分互补序列,诱导核酸修饰的Au NPs聚集。通过对实验条件进行优化,结果表明在25℃条件下,适配体与其部分互补序列杂交摩尔比为1:1,与目标卡那霉素的作用时间1 h,加入核酸修饰的Au NPs反应2 h时,该方法的线性检测范围为6.3~43.8 nmol/L,检测限为5.3 nmol/L。将该方法应用于牛奶样品中卡那霉素的检测,回收率在95.1%~104.6%之间。  相似文献   

7.
8.
An electrochemical biosensor for kinase-catalyzed reactions is coupled with the thiophosphorylation of the substrate peptide using adenosine 5'-[gamma-thio] triphosphate (ATP-S) as the co-substrate.  相似文献   

9.
The polypeptide sequence MS14 (MHGKTQATSGTIQS) was used to explore a new method for biomimetic preparation of gold nanoparticles and their aggregates. Self‐congregation of gold nanoparticles into aggregates in MS14 aqueous solution and self‐assembly of gold crystallites onto the designed complex of MS14‐PET film [protonated poly(ethylene terephthalate)] proved the specific gold‐binding characteristic of the single‐copy peptide MS14 in vitro. In aqueous solution MS14 could recover Au(III) to Au(0), tested by means of TEM, EDX and XPS. Further research suggested that the pH of the solution and the concentration of Au(III) influenced the morphology and size of the gold nanoparticles formed. In addition, extra reducing agent, sodium citrate, was introduced into the HAuCl4–MS14 system and uniformly dispersed nanoparticles under neutral condition were obtained. Finally, we discuss the possible mechanism of this biomimetic synthesis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
We report on an electrochemiluminescent (ECL) sensing technique for the detection of the hybridization between oligonucleotides. A glassy carbon electrode was first functionalized with a composite prepared from gold nanoparticles and carbon nanotubes, and a sensor was then constructed by immobilizing the probing oligonucleotide. The ECL of luminol acts as the sensing signal. It is quenched, to a different degree, by the hybridized double strands of the oligonucleotide depending on the match status. The slope of the ECL response as a function of the status of hybridization drops with increasingly matched hybridization. The response is attributed to the interaction between luminol and the strands of oligomers, and also related to the reduction of reactive oxygen species.
Figure
An electrochemiluminescent sensing technique is developed by immobilization of probing oligonucleotide on a previously functionalized electrode with composite of carbon nanotubes and gold nano-particles. The quenching efficiency for ECL of luminol upon the hybridized status of target oligonucleotide with probing one had been detected where the mismatch ratio was distinguishable. ECL response for luminol on (a) CNTs/AuNP/GCE, (b) probe-strand/CNTs /AuNP/GCE, (c) 1-3 hybridized strands/CNTs/AuNP/GCE and (d) 1-2 hybridized strands/CNTs/AuNP/GCE.  相似文献   

12.
Zhang FX  Han L  Israel LB  Daras JG  Maye MM  Ly NK  Zhong CJ 《The Analyst》2002,127(4):462-465
This paper reports findings of an investigation of the unusual colorimetric change of gold nanoparticles in the presence of thiol-containing amino acids such as homocysteine, cysteine and glutathione. The colorimetric change for homocysteine exhibits a rate that is about two orders of magnitude higher than that for cysteine, and at least five orders of magnitude higher than that for glutathione. The reactivity is effectively reduced or suppressed by the coexistence of either cysteine or glutathione. It is believed that the reactivity involves encapsulation of the particles by the thiol-containing amino acids which is followed by crosslinking at the encapsulating shells. In comparison with cysteine and glutathione, homocysteine has a slower encapsulating rate but a faster crosslinking rate. Implications of the findings of the interfacial encapsulation and crosslinking reactivities of gold nanoparticles to potential nanoparticle-enhanced analytical detection of thiol-containing amino acids are also briefly discussed.  相似文献   

13.
Herein, a simple and novel colorimetric method for detection of potassium ions (K+) was developed. The colorimetric experiments revealed that upon the addition of K+, the conformation of anti-K+ aptamer in solution changed from random coil structure to compact rigid G-quadruplex one. This compact rigid G-quadruplex structure could not protect AuNPs against K+-induced aggregation, and thus the visible color change from wine-red to blue-purple could be observed by the naked eye. The linear range of the colorimetric aptasensor covered a large variation of K+ concentration from 5 nM to 1 μM and the detection limit of 5 nM was obtained. Moreover, this assay was able to detect K+ with high selectivity and had great potential applications.  相似文献   

14.
Nietzold C  Lisdat F 《The Analyst》2012,137(12):2821-2826
In this study we describe the use of gold nanoparticles as a fast detection system for the sensitive analysis of proteins. The immunological method allows for protein analysis at the nanogram level, as required for clinical diagnosis. Initially a test protein is used for the development of the assay. The system is subsequently adopted for alpha-fetoprotein, which is a relevant tumor marker. This work demonstrates that antibody functionalized gold nanoparticles can be used for the detection of proteins by forming gold nanoparticle aggregates. The influence of the size of the gold nanoparticles on the sensitivity of the assay is investigated in the range from 20-60 nm particles; the larger particles show here the highest relative changes. The formation of antigen-gold nanoparticle aggregates is detected by an increase in hydrodynamic diameter by dynamic light scattering (DLS). UV/Vis spectroscopy also allows assay monitoring by quantifying the red shift of the plasmon resonance wavelength. Alpha-fetoprotein can be analysed in the concentration range of 0.1-0.4 μg ml(-1). The influence of pH, ionic strength and ratio of sample to Au-NP solution is studied. With this method, the protein AFP can be rapidly detected as demanded for clinical diagnosis.  相似文献   

15.
A new method to increase the active area (A act) of nanoelectrode ensembles (NEEs) is described. To this aim, gold nanoparticles (AuNPs) are immobilized onto the surface of NEEs using cysteamine as a cross-linker able to bind the AuNPs to the heads of the nanoelectrodes to obtain the so-called AuNPs-NEEs. The analysis of the cyclic voltammograms recorded in pure supporting electrolyte showed that the presence of the nanoparticles reflects in an, approximately, ten-times increase in the electrochemically active area of the ensemble. The measurement of the amount of electroactive polyoxometalates, which can be adsorbed on the gold surface of NEEs vs. AuNPs-NEEs, confirmed a significant increase of active area for the latter. These evidences indicate that there is a good electronic connection between the AuNPs and the underlying nanoelectrodes. The possibility to exploit AuNPs-NEEs for biosensing application was tested for the case of DNA-hybridization detection. After immobilization on the gold surface of AuNPs-NEEs of a thiolated single-stranded DNA, the hybridization with complementary sequences labeled with glucose oxidase (GOx) was performed. The detection of the hybridization was achieved by adding to the electrolyte solution the GOx substrate (i.e., glucose) and a suitable redox mediator, namely the (ferrocenylmethyl) trimethylammonium (FA+) cation; when the hybridization occurs, an electrocatalytic increase of the oxidation current of FA+ is recorded. Comparison of electrocatalytic current recorded at DNA modified NEEs and AuNPs-NEEs indicate, for the latter, a significant increase in sensitivity in the detection of the DNA-hybridization event.  相似文献   

16.
The second harmonic generation response from protein-mediated gold nanoparticles assemblies in solution has been studied by the technique of hyper Rayleigh scattering (HRS). It is found that the HRS intensity from biotinylated bovine serum albumin coated gold nanoparticles is enhanced when StreptAvidin is added into the solution. This increase in intensity is attributed to the aggregation of the gold nanoparticles through the binding of biotin and StreptAvidin. Comparison with photo-absorption spectroscopy indicates that the technique of HRS is a potential tool in detecting small levels of particle aggregation in liquid samples.  相似文献   

17.
We report a colorimetric detection of c-Kit mutations using selective aggregation of the peptide nucleic acid modified gold nanoparticles that is caused by electrostatic attraction.  相似文献   

18.
Recently, graphene oxide (GO) has shown superiority for disease detection arising from its unique physical and chemical properties. However, proteins adsorbed on the surface of GO prevent sensitivity improvement in fluorescence-based detection methods. In this paper, a label-free method based on aptamer modified gold nanoparticles (GNPs) combined with Tween 80 was shown to solve this problem using the detection of thrombin as an example. An aptamer was designed and bound to thrombin by changing its conformation. Tween 80 was used for rapid and reproducible synthesis of stable DNA-functionalized GNPs and prevented the thrombin from nonspecific binding to GO. Thrombin was detected with a limit of 0.68 pM by taking advantage of the efficient cross-linking effect of aptamer-GNPs to GO. The sensor was validated by determining thrombin concentration in human blood serum samples. The results indicate that this method has promising analytical application in medical diagnostic.  相似文献   

19.
We have developed a new immunological biosensor for ultrasensitive quantification of human epidermal growth factor receptor-3(HER-3). In order to construct the biosensor, the gold electrode surface was layered with, hexanedithiol, gold nanoparticles, and cysteamine, respectively. Anti-HER-3 antibody was covalently attached to cysteamine by glutaraldehyde and used as a bioreceptor in a biosensor system for the first time by this study. Surface characterization was obtained by means of electrochemical impedance spectroscopy and voltammetry. The proposed biosensor showed a good analytical performance for the detection of HER-3 ranging from 0.2 to 1.4 pg mL−1. Kramers–Kronig transform was performed on the experimental impedance data. Moreover, in an immunosensor system, the single frequency impedance technique was firstly used for characterization of interaction between HER-3 and anti-HER-3. Finally the presented biosensor was applied to artificial serum samples spiked with HER-3.  相似文献   

20.
Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly sensitive and selective colorimetric detection of DA by using two specific ligands modified Ag nanoparticles, where the DA molecules can make dual recognition with high specificity. The colloidal suspension of modified Ag nanoparticles was agglomerated after interacting with DA, while the color of Ag nanoparticles suspension changed from yellow to brown, arising from the interparticle plasmon coupling during the aggregation of Ag nanoparticles. The modified Ag nanoparticles suspension and agglomeration were confirmed by transmission electron microscope images. The optical properties behind the color change were thoroughly investigated by using UV-Vis and Raman techniques. The changes in p H, zeta potential, particle size and surface charge density by adding DA were also determined by using dynamic light scattering measurements. The detection limits of modified Ag probes for DA was calculated to be 6.13′10~(-6) mol L~(-1)(S/N=2.04) and the correlation co-efficient was determined to be 0.9878. Because of the simplicity in operation and instrumentation of the colorimetric method, this work may afford a feasible, fast approach for detecting and monitoring the DA levels in physiological and pathological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号