首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present calculations of the nucleation barrier during crystallization in binary hard sphere mixtures under moderate degrees of supercooling using Monte Carlo simulations in the isothermal-isobaric semigrand ensemble in conjunction with an umbrella sampling technique. We study both additive and negatively nonadditive binary hard sphere systems. The solid-fluid phase diagrams of such systems show a rich variety of behavior, ranging from simple spindle shapes to the appearance of azeotropes and eutectics to the appearance of substitutionally ordered solid phase compounds. We investigate the effect of these types of phase behavior upon the nucleation barrier and the structure of the critical nucleus. We find that the underlying phase diagram has a significant effect on the mechanism of crystal nucleation. Our calculations indicate that fractionation of the species upon crystallization increases the difficulty of crystallization of fluid mixtures and in the absence of fractionation (azeotropic conditions) the nucleation barrier is comparable to pure fluids. We also calculate the barrier to nucleation of a substitutionally ordered compound solid. In such systems, which also show solid-solid phase separation, we find that the phase that nucleates is the one whose equilibrium composition is closer to the composition of the fluid phase.  相似文献   

2.
We present a methodology based on grand-canonical transition-matrix Monte Carlo and finite-size scaling analysis to calculate surface tensions in binary mixtures. In particular, mixture transition-matrix Monte Carlo is first used to calculate apparent, system-size-dependent free-energy barriers separating coexisting fluid phases. Finite-size scaling is then used to extrapolate these values to the infinitely large system limit to determine the true thermodynamic surface tension. A key distinction of the methodology is that it yields the entire isothermal surface-tension curve for a binary mixture in a relatively small number of simulations. We demonstrate the utility of the method by calculating surface-tension curves for three binary Lennard-Jones mixtures. While we have only examined the surface tension of simple fluids in this work, the method is general and can be extended to molecular fluids as well as to determine interfacial tensions of liquid-liquid interfaces.  相似文献   

3.
We present a novel computational methodology for determining fluid-phase equilibria in binary mixtures. The method is based on a combination of highly efficient transition-matrix Monte Carlo and histogram reweighting. In particular, a directed grand-canonical transition-matrix Monte Carlo scheme is used to calculate the particle-number probability distribution, after which histogram reweighting is used as a postprocessing procedure to determine the conditions of phase equilibria. To validate the methodology, we have applied it to a number of model binary Lennard-Jones systems known to exhibit nontrivial fluid-phase behavior. Although we have focused on monatomic fluids in this work, the method presented here is general and can be easily extended to more complex molecular fluids. Finally, an important feature of this method is the capability to predict the entire fluid-phase diagram of a binary mixture at fixed temperature in a single simulation.  相似文献   

4.
We report a Kinetic Monte Carlo (KMC) study of the diffusion of linear n-hexane (nC6) and 2,2-dimethylbutane (22DMB) mixture in zeolite silicalite. We first investigated the loading dependences of single component self- and corrected diffusivities of nC6 at 300 K. Anisotropic transition rates are implemented to account for the distribution of the molecules within the zeolite framework. Repulsive guest-guest interactions are modeled using the parameter introduced by Reed and Ehrlich (Surf. Sci. 102:588–601, 1981). The results are in good agreement with recent experimental Quasi Elastic Neutron Scattering data of Jobic et al. (J. Phys. Chem. B 110:2195–2201, 2006), although the influence of the adsorption isotherm inflection is not reproduced. The binary diffusion study of nC6/22DMB mixtures was performed by implementing the nC6 transition rates used for the single component study while 22DMB molecules propagate via intersection-intersection hops. This KMC model allows for different saturation capacities and accounts for interactions between molecules by introducing f ij parameters. Results show the large impact of guest-guest interactions between nC6 and 22DMB on both self- and corrected diffusivities of the two components. Molecule-size effects are found to be predominant near 22DMB saturation capacity. Acceleration/deceleration effects already described in the literature are confirmed.  相似文献   

5.
The adsorption of binary mixtures on square lattices is studied by combining theoretical modeling and Monte Carlo (MC) simulations in grand canonical ensemble. The adsorption thermodynamics is analyzed through the total and partial isotherms. Two theoretical models have been used in the present study: (i) the first, which we called cluster approximation (CA), is based on exact calculations of configurations on finite cells. An efficient algorithm allows us to calculate the detailed structure of the configuration space for \(m = l \times l \) cells; and (ii) the second is a generalization of the classical quasi-chemical approximation (QCA) in which the adsorbate is a binary mixture of species \(a\) and \(b\) . Adsorbate–adsorbate lateral interactions are incorporated in the context of the two mentioned approximations. Results from CA and QCA are compared with MC simulations. Close agreement between simulated and theoretical data supports the validity of the theoretical models to describe the adsorption of mixed gases on two-dimensional surfaces.  相似文献   

6.
We present Monte Carlo simulations of the equation of state and radial distribution function for a model fluid composed of hard spheroids.  相似文献   

7.
8.
9.
The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu [J. Chem. Phys. 117, 10156 (2002)] for the hard-core contribution and a corrected mean-field theory for the attractive contribution. A comparison of the theoretical results with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field theory. Both the present corrected theory and the simulations suggest that depletion and desorption occur at low temperature, and the local segregation can be observed in most cases. For binary mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface excesses than the original one does, while in the case of the attractive pore, no improvement is found in the prediction of a surface excess of the smaller molecule.  相似文献   

10.
Monte Carlo simulations are used to study lattice gases of particles with extended hard cores on a two-dimensional square lattice. Exclusions of one and up to five nearest neighbors (NN) are considered. These can be mapped onto hard squares of varying side length, lambda (in lattice units), tilted by some angle with respect to the original lattice. In agreement with earlier studies, the 1NN exclusion undergoes a continuous order-disorder transition in the Ising universality class. Surprisingly, we find that the lattice gas with exclusions of up to second nearest neighbors (2NN) also undergoes a continuous phase transition in the Ising universality class, while the Landau-Lifshitz theory predicts that this transition should be in the universality class of the XY model with cubic anisotropy. The lattice gas of 3NN exclusions is found to undergo a discontinuous order-disorder transition, in agreement with the earlier transfer matrix calculations and the Landau-Lifshitz theory. On the other hand, the gas of 4NN exclusions once again exhibits a continuous phase transition in the Ising universality class-contradicting the predictions of the Landau-Lifshitz theory. Finally, the lattice gas of 5NN exclusions is found to undergo a discontinuous phase transition.  相似文献   

11.
We have built the liquid crystal phase diagram of several binary mixtures of freely rotating hard spherocylinders employing a second-order virial density functional theory with Parsons scaling, suitably generalized to deal with mixtures and smectic phases. The components have the same diameter and aspect ratio of moderate value, typical of many mesogens. Attention has been paid to smectic-smectic demixing and the types of arrangement that rods can adopt in layered phases. Results are shown to depend on the aspect ratio of the individual components and on the ratio of their lengths. Smectic phases are seen not to easily mix together at sufficiently high pressures. Layered phases where the longer rods are the majority component have a smectic-A structure. In the opposite case, a smectic-A(2) phase is obtained where the shorter particles populate the layers and the longer ones prefer to stay parallel to the latter in the interlayer region.  相似文献   

12.
The phase diagram of symmetrical polymer blends (A,B) confined into thin films is studied, considering both the effect of finite film thickness D and of surface forces at the confining walls that either prefer both the same species, or different species. In the case of <“>neutral<”> walls confinement enhances the compatibility of the blend. The critical temperature is depressed, the coexistence curve gets flattened (reflecting a crossover from 3‐dimensional to 2‐dimensional critical behavior). But if both walls preferentially attract species A, then also the critical composition of the blend is shifted to the A‐rich side of the phase diagram, and the coexistence curve exhibits a bulge just above the wetting transition temperature. If one wall attracts A and the other B, lateral phase separation sets in via a first order transition. Above this transition, an interface parallel to the walls is stabilized in the system.  相似文献   

13.
14.
We propose strict canonical and microcanonical Monte Carlo algorithms for an arbitrary lattice-gas binary mixture. We deduce formulas that allow us to obtain field quantities over the ensembles in which their conjugate extensive quantities are conserved. As an example, we have considered a lattice-gas mixture that is equivalent to the spin-1 Blume-Emery-Griffiths model [Phys. Rev. A 4, 1071 (1971)]. For a finite system and near a phase coexistence, the field as a function of its extensive conjugate shows a loop that disappears in the thermodynamic limit giving rise to the usual tie line. The first-order phase transition was determined by the use of three criteria.  相似文献   

15.
16.
We use replica exchange Monte Carlo simulations to measure the equilibrium equation of state of the disordered fluid state for a binary hard sphere mixture up to very large densities where standard Monte Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we use (up to N = 100), we find no sign of a pressure discontinuity near the location of dynamic glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for the fate of the fluid state in the thermodynamic limit.  相似文献   

17.
Based on a standard constant-pressure Monte Carlo molecular simulation, we have studied liquid crystal phases of binary mixtures of nonspherical molecules. The components of the mixtures are two types of hard Gaussian overlap (HGO) molecules. The first type of molecule has a small molecularelongation parameter (short HGO molecules) and cannot form stable liquid crystal phase in the bulk by themselves. The second type of molecule has a large elongation parameter (long HGO molecules) and can form a liquid crystal phase easily. In the mixtures, the short HGO molecules can form an orientationally ordered phase because the long HGO molecules form confining surfaces to induce the alignment of the short molecules. We also study the isotropic-nematic phase transition in different mixtures composed of short and long HGO molecules with different elongations and concentrations. The obtained result implies that small anisotropic molecules can show liquid crystal behavior.  相似文献   

18.
A new equation of state for associating fluids has recently been presented by Medeiros and Tellez-Arredondo, the Cubic-Two-State Equation of State (CTS EoS) [Ind. Eng. Chem. Res. 47 (2008) 5723]. This equation arises from the coupling of the Soave–Redlich–Kwong EoS (SRK) with an association term from a two-state association model. The CTS EoS is polynomial in volume and it is able to describe vapor pressures and molar volume of associating fluids such as water, alcohol and phenol, among others. The equation is also able to describe the liquid–vapor equilibria of their mixtures with alkanes. In this paper, the physical and thermodynamic foundations of the CTS EoS are further investigated. In order to verify its applicability for cross-associating systems, the equation was employed in the prediction of phase equilibria behavior of binary alcohol–alcohol and water–alcohol mixtures. Very good agreement between predictions and experimental phase equilibria data was obtained with very simple combining rules and only one adjustable binary parameter. No additional parameters were necessary to describe ternary systems. With the purpose of checking the model's hypothesis and limitations, the two-state association term was coupled with the hard sphere Carnahan–Starling EoS, forming the CS-TS equation and the association characteristic parameters were determined theoretically for prototype association fluids. Monte Carlo NPT simulations of such fluids were performed and the results were compared with the equation's predictions. The CS-TS was able to describe qualitatively the pvTpvT behavior of the prototype; nevertheless, it is not as accurate as those predictions obtained from the combination CS with Wertheim's association term. It seems that, when adjusting parameters of the CTS EoS to real substances, the discrepancies between the predicted and the real association contribution are dissipated among other adjustable parameters, specially on the dispersive term of the SRK equation. Finally, it is shown that CTS EoS isotherms can only have one or three real bigger roots than the co-volume for positive pressures, similar to cubic equations of state, and then it has the desirable form to describe vapor–liquid phase equilibria of associating compounds mixtures.  相似文献   

19.
The discontinuous transition between dense and dilute phases in polyelectrolyte gels is observed in Bond-Fluctuation Method Monte Carlo simulations of gels. The transition is driven by the competition between local attractive interactions of a poor-quality solvent and global repulsive interactions from counter-ion pressure. A procedure is introduced that prevents local attractive interactions from destroying ergodicity. Under good solvent conditions, lengths and volumes of gels are found to follow self-avoiding random walk scaling. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Canonical Monte Carlo simulations of the interaction between a uniformly charged spherical particle and a discretely charged planar surface in solutions of symmetric and asymmetric electrolytes were performed. To assess the nature of the interactions, the force exerted on the colloidal particle perpendicular to the planar surface was calculated. Attractive minima in the interaction force between the similarly charged surfaces reveal the occurrence of two phenomena: long-range attraction of electrostatic origin and short-range attraction due to depletion effects. The degree of electrostatic coupling determines the magnitude and range of like-charge attraction between the two surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号