首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The determination of the solvation shell of Hg(II)-containing molecules and especially the interaction between Hg(II) and water molecules is the first requirement to understand the transmembrane passage of Hg into the cell. We report a systematic DFT study by stepwise solvation of HgCl(2) including up to 24 water molecules. In order to include pH and salinity effects, the solvation patterns of HgClOH, Hg(OH)(2) and HgCl(3)(-) were also studied using 24 water molecules. In all cases the hydrogen bond network is crucial to allow orbital-driven interactions between Hg(II) and the water molecules. DFT Born-Oppenheimer molecular dynamics simulations starting from the stable HgCl(2)-(H(2)O)(24) structure revealed that an HgCl(2)-(H(2)O)(3) trigonal bipyramid effective solute appears and then the remaining 21 water molecules build a complete first solvation shell, in the form of a water-clathrate. In the HgCl(2), HgClOH, Hg(OH)(2)-(H(2)O)(24) optimized structures Hg also directly interacts with 3 water molecules from an orbital point of view (three Hg-O donor-acceptor type bonds). All the other interactions are through hydrogen bonding. The cluster-derived solvation energies of HgCl(2), HgClOH and Hg(OH)(2) are estimated to be -34.4, -40.1 and -47.2 kcal mol(-1), respectively.  相似文献   

2.
The preferential solvation of water plays an important role in ferrocene research which is a subject of current interest. Voltammetric investigations were carried out for Au electrode in acetonitrile/water, showing preferential solvation of water. In our work, the preferential solvation of water in acetonitrile/water was studied by electrochemical methods including cyclic volitammetry, electrochemical impedance spectra and double‐step chronoamperometry. Ferrocenemethanol (FcCH2OH) molecules as a solute spontaneously adsorb on the electrode surface in anhydrous acetonitrile, resulting from acetonitrile molecules tend to form an acetonitrile solvent layer on the surface of the electrode and acetonitrile solvent layer has a lower energy barrier than the aqueous solvent layer, which has been obtained by modeling solvation. The solvent strongly influences electrochemical behavior of solute. Once there is an amount of water in acetonitrile solvent, FcCH2OH that adsorbed on the electrode surface desorb. This is because water preferentially solvate with FcCH2OH in term of intermolecular forces between solvent and solute. Moreover, hydrogen bond between water molecules and FcCH2OH molecules is stronger than dipole‐dipole interaction between acetonitrile molecules and FcCH2OH molecules in solvation effect. Through electrochemical behavior of FcCH2OH changing, preferential solvation of water is analyzed by electrochemical methods.  相似文献   

3.
Solvation in supercritical water under equilibrium and nonequilibrium conditions is studied via molecular dynamics simulations. The influence of solute charge distributions and solvent density on the solvation structures and dynamics is examined with a diatomic probe solute molecule. It is found that the solvation structure varies dramatically with the solute dipole moment, especially in low-density water, in accord with many previous studies on ion solvation. This electrostrictive effect has important consequences for solvation dynamics. In the case of a nonequilibrium solvent relaxation, if there are sufficiently many water molecules close to the solute at the outset of the relaxation, the solvent response measured as a dynamic Stokes shift is almost completely governed by inertial rotations of these water molecules. By contrast, in the opposite case of a low local solvent density near the solute, not only rotations but also translations of water molecules play an important role in solvent relaxation dynamics. The applicability of a linear response is found to be significantly restricted at low water densities.  相似文献   

4.
The solvation of tetramethylammonium chloride (Me4NCl) and tetra-n-butylammonium chloride (Bu4NCl) in water-acetonitrile mixtures was investigated by mass spectrometry of clusters isolated from the solution. As far as the positive ions are concerned, clusters composed of alkylammonium ions and acetonitrile molecules only were observed, even for mixtures with high water content. In contrast, for the negative ions, clusters composed of chloride with both water and/or acetonitrile molecules were observed. For the smaller system (Me4NCl) we performed quantum chemical calculations and molecular dynamics simulations. It was found that even though water is present in the solvation shell of Me4N+, only acetonitrile has a strong electrostatic interaction with the cation. Water molecules around Me4N+ form hydrogen bonds with other water molecules, and they interact with Me4N+ mainly via dispersive interactions. These results indicate that Me4N+ behaves like a hydrophobic solute. On the other hand, the interaction of Cl- with water and acetonitrile is of comparable strength and, in both cases, the electrostatic interaction dominates. Herein we demonstrate experimentally and theoretically that positive and negative ions give rise to characteristic solvation structures in mixed solvents: even a relatively small organic cation, such as Me4N+, exhibits a hydrophobic-like solvation shell.  相似文献   

5.
We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12–6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in relatively smaller systems consisting of about five hundred molecules. We dedicate this work to Professor Debashis Mukherjee on his 60th Birthday.  相似文献   

6.
Solvent mixtures often alter the solubility of polymeric substances. Statistical copolymers made from 2-methyl-2-oxazoline (MeOx) and 2-phenyl-2-oxazoline (PhOx) are known for their varying solubilities in pure ethanol, pure water and in binary mixtures of ethanol-water. Constrained Molecular Dynamics (MD) simulations have been carried out with an aim to explain the varying solubilities of the statistical MeOx-PhOx copolymers. The solute-solvent dynamic friction kernels calculated through constrained MD simulations corroborate the solubility pattern in these copolymers. The solvation characteristics have been analyzed in terms of the solute-solvent radial distribution functions (RDFs). The ethanol-soluble MeOx-PhOx copolymers exhibit characteristic solute-composition dependence in the dynamic solute-solvent friction kernels, indicating the strength of the solute-solvent correlations. The aggressive solvation by the ethanol molecules in the binary solvent mixtures has been brought out by the O(solute)-H(ethanol) RDFs which exhibit a characteristic dependence on the ethanol content in the solvent composition. The corresponding O(solute)-H(water) RDFs are devoid of any such composition dependence. For all the MeOx-PhOx copolymers, the O-site solvation is strongly dominated by the water molecules and the N-sites are solvated equally by both ethanol and water molecules.  相似文献   

7.
Implicit solvent simulations are those in which solvent molecules are not explicitly simulated, and the solute-solute interaction potential is modified to compensate for the implicit solvent effect. Implicit solvation is well known in Brownian dynamics of dilute solutions but offers promise to speed up many other types of molecular simulations as well, including studies of proteins and colloids where the local density can vary considerably. This work examines implicit solvent potentials within a more general coarse-graining framework. While a pairwise potential between solute sites is relatively simple and ubiquitous, an additional parametrization based on the local solute concentration has the possibility to increase the accuracy of the simulations with only a marginal increase in computational cost. We describe here a method in which the radial distribution function and excess chemical potential of solute insertion for a system of Lennard-Jones particles are first measured in a fully explicit, all-particle simulation, and then reproduced across a range of solute particle densities in an implicit solvent simulation.  相似文献   

8.
Computer simulations are used to study solvation free energies and solubilities in supercritical solvents. Solvation free energies are calculated using the particle insertion method. The equilibrium solvent configurations required for these calculations are based on molecular dynamics simulations employing model solvent potentials previously tuned to reproduce liquid-vapor coexistence properties of the fluids Xe, C(2)H(6), CO(2), and CHF(3). Solutes are represented by all-atom potentials based on ab initio calculations and the OPLS-AA parameter set. Without any tuning of the intermolecular potentials, such calculations are found to reproduce the solvation free energies of a variety of typical solid solutes with an average accuracy of +/-2 kJmol. Further calculations on simple model solutes are also used to explore general aspects of solvation free energies in supercritical solvents. Comparisons of solutes in Lennard-Jones and hard-sphere representations of Xe show that solvation free energies and thus solubilities are not significantly influenced by solvent density fluctuations near the critical point. The solvation enthalpy and entropy do couple to these fluctuations and diverge similarly to solute partial molar volumes. Solvation free energies are also found to be little affected by the local density augmentation characteristic of the compressible regime. In contrast to solute-solvent interaction energies, which often provide a direct measure of local solvent densities, solvation free energies are remarkably insensitive to the presence of local density augmentation.  相似文献   

9.
A neutron diffraction experiment with isotopic H/D substitution on four concentrated NaOH/H(2)O solutions is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. These allow to investigate both the changes of the water structure in the presence of ions and their solvation shells. It is found that the interaction with the solute affects the tetrahedral network of hydrogen bonded water molecules in a manner similar to the application of high pressure to pure water. The solvation shell of the OH(-) ions has an almost concentration independent structure, although with concentration dependent coordination numbers. The hydrogen site coordinates a water molecule through a weak bond, while the oxygen site forms strong hydrogen bonds with a number of molecules that is on the average very close to four at the higher water concentrations and decreases to about three at the lowest one. The competition between hydrogen bond interaction and Coulomb forces in determining the orientation of water molecules within the cation solvation shell is visible in the behavior of the g(NaHw)(r) function  相似文献   

10.
The structural nature of the solvation shells of an iodate ion, which is known to be a polyoxy‐anion with a large cationic centre, is investigated by means of Born–Oppenheimer molecular dynamics (BOMD) simulations using BLYP and the dispersion corrected BLYP‐D3 functionals. The iodate ion is found to have two distinct solvation regions around the positively charged iodine (iodine solvation shell or ISS) and the negatively charged oxygens (oxygen solvation shell or OSS). We have looked at the spatial, orientational, and hydrogen bond distributions of water in the two solvation regions. It is found that the water orientational profile in the ISS is typical of a cation hydration shell. The hydrogen bonded structure of water in the OSS is found to be very similar to that of the bulk water structure. Thus, the iodate ion essentially behaves like a positively charged iodine ion in water as if there is no anionic part. This explains why the cationic character of the iodate ion was prominently seen in earlier studies. The arrangement of water molecules in the two solvation shells and in the intervening regions around the iodate ion is further resolved by looking at structural cross‐correlations. The electronic properties of the solvation shells are also looked at by calculating the solute–solvent orbital overlap and dipole moments of the solute and solvation shell water. We have also performed BOMD simulations of iodate ion‐water clusters at experimentally relevant conditions. The simulation results are found to be in agreement with experimental results. © 2018 Wiley Periodicals, Inc.  相似文献   

11.
Monte Carlo simulations have been carried out for the system consisting of a 1,4,7,10-tetraazacyclododecane (cyclen)-lithium complex in 201 water molecules. The volume of the periodic cube was calculated using the experimental density of pure water at 298 K and 1 atm of 1 g.cm(-)(3), plus additional space occupied by the complex. The geometry of the complex is the alternated form, where the ion is located at the center of the cyclen. The complex-water interaction was represented by the cyclen-water and lithium-water pair potentials, both of which were developed on the basis of ab initio calculations. The results show two layers of solvation shells consisting of 2 and 6.9 water molecules. Two water molecules in the first solvation shell (O(1) and O(2)) bind directly to the ion in which the ion-oxygen distance is 2.38 A, the dipole vector points to the ion, and rotation takes place around the ion-oxygen axis. In the next layer, 4 water molecules coordinate simultaneously to the first 2 water molecules in the first shell and the NH functional groups of cyclen. The remaining 2.9 water molecules in the second layer are also coordinated to be in the first half-hydration shell of O(1) and O(2).  相似文献   

12.
The relationship is investigated for QM/MM (quantum-mechanical/molecular-mechanical) systems between the fluctuations of the electronic state of the QM subsystem and of the solvation effect due to the QM-MM interaction. The free-energy change due to the electron-density fluctuation around its average is highlighted, and is evaluated through an approximate functional formulated in terms of distribution functions of the many-body coupling (pairwise non-additive) part of the QM-MM interaction energy. A set of QM/MM simulations are conducted in MM water solvent for QM water solute in ambient and supercritical conditions and for QM glycine solute in the neutral and zwitterionic forms. The variation of the electronic distortion energy of the QM solute in the course of QM/MM simulation is then shown to be compensated by the corresponding variation of the free energy of solvation. The solvation free energy conditioned by the electronic distortion energy is further analyzed with its components. It is found that the many-body contribution is essentially equal between the free energy and the average sum of solute-solvent interaction energy.  相似文献   

13.
Site-specific solvation has been determined by intermolecular NOE measurements between solvent and solute. The experimental effect is shown on the four compounds 2-butanol, L-alanyl-L-tryptophan (Ala-Trp), adenosine and the disodium salt of adenosine 5'-monophosphate (5'-AMP) in the two solvents water and dimethyl sulfoxide (DMSO). The strength of NOE transfer correlates with the average distribution of solvent molecules around the corresponding solvation sites represented by the number of solvent molecules in a first solvation sphere, which can be obtained from molecular dynamics simulations in water. Saturation transfer between exchanging protons explains some deviations from this correlation. The NOE transfer measurements provide information on specific solute-solvent interactions and contribute to a better understanding of solvation phenomena. On the basis of a distinct relationship between steric solvation hindrance and the strength of NOE transfer, the application of such measurements for conformational analysis has been demonstrated for the first time.  相似文献   

14.
A new approach to the calculation of the free energy of solvation from trajectories obtained by molecular dynamics simulation is presented. The free energy of solvation is computed as the sum of three contributions originated at the cavitation of the solute by the solvent, the solute-solvent nonpolar (repulsion and dispersion) interactions, and the electrostatic solvation of the solute. The electrostatic term is calculated based on ideas developed for the broadly used continuum models, the cavitational contribution from the excluded volume by the Claverie-Pierotti model, and the Van der Waals term directly from the molecular dynamics simulation. The proposed model is tested for diluted aqueous solutions of simple molecules containing a variety of chemically important functions: methanol, methylamine, water, methanethiol, and dichloromethane. These solutions were treated by molecular dynamics simulations using SPC/E water and the OPLS force field for the organic molecules. Obtained free energies of solvation are in very good agreement with experimental data.  相似文献   

15.
The thermodynamic integration (TI) and expanded ensemble (EE) methods are used here to calculate the hydration free energy in water, the solvation free energy in 1‐octanol, and the octanol‐water partition coefficient for a six compounds of varying functionality using the optimized potentials for liquid simulations (OPLS) all‐atom (AA) force field parameters and atomic charges. Both methods use the molecular dynamics algorithm as a primary component of the simulation protocol, and both have found wide applications in fields such as the calculation of activity coefficients, phase behavior, and partition coefficients. Both methods result in solvation free energies and 1‐octanol/water partition coefficients with average absolute deviations (AAD) from experimental data to within 4 kJ/mol and 0.5 log units, respectively. Here, we find that in simulations the OPLS‐AA force field parameters (with fixed charges) can reproduce solvation free energies of solutes in 1‐octanol with AAD of about half that for the solute hydration free energies using a extended simple point charge (SPC/E) model of water. The computational efficiency of the two simulation methods are compared based on the time (in nanoseconds) required to obtain similar standard deviations in the solvation free energies and 1‐octanol/water partition coefficients. By this analysis, the EE method is found to be a factor of nine more efficient than the TI algorithm. For both methods, solvation free energy calculations in 1‐octanol consume roughly an order of magnitude more CPU hours than the hydration free energy calculations. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Many-body potentials for the aqueous Li(+), Na(+), Mg(2+), and Al(3+) ions have been constructed from ab initio cluster calculations. Pure pair, effective pair, effective three-body, and effective polarizable models were created and used in subsequent molecular dynamics simulations. The structures of the first and second solvation shells were studied using radial distribution functions and angular-radial distribution functions. The effective three-body and polarizable potentials yield similar first-shell structures, while the contraction of the O-O distances between the first and second solvation shells is more pronounced with the polarizable potentials. The definition of the tilt angle of the water molecules around the ions is discussed. When a proper definition is used, it is found that for Li(+), Mg(2+), and Al(3+) the water molecules prefer a trigonal orientation, but for Na(+) a tetrahedral orientation (ion in lone-pair direction) is preferred. The self-diffusion coefficients for the water molecules and the ions were calculated; the ionic values follow the order obtained from experiment, although the simulated absolute values are smaller than experiment for Mg(2+) and Al(3+).  相似文献   

17.
Molecular dynamics simulations of aqueous solutions of the solutes acetamide (AcNH2), acetic acid (AcOH), and acetaldehyde (AcH) were made using Lennard–Jones 12-6-1 potentials to describe the solute–solvent interactions. The Morokuma decomposition scheme and the ESIE solute atomic charges were used to reproduce the exchange, polarization, and electrostatic components of the solute–water interaction energy. A nonlinear perturbation was incorporated into the “slow-growth” technique in order to improve the results for the solvation Gibbs energy that were found to be in agreement with the available experimental and theoretical values.  相似文献   

18.
This study provides the first accurate analysis of the energetics of solvation of blood porphyrins in binary solvents which are considered as appropriate models for a smooth transition from a polar protein-like phase to an apolar lipid-like environment. Our results do indicate that hematoporphyrin dimethylether dimethylester (HDEDE) and deuteroporphyrin dimethylether (DDE), as well as the model of their ester side-chains ethyl acetate (EtOAc), reveal more exothermic solvation in chloroform (CHCl3) than in dimethylformamide (DMF) and, especially, in 1-octanol (OctOH). The energetics of pair interaction between dissolved species and cosolvent molecules both in a protein-like and a lipid-like environment are clearly associated with these solvation effects. The interaction between blood porphyrins and DMF in OctOH is accompanied by large negative enthalpy changes at both temperatures, whereas in chloroform, forming strong H-bonds with dissolved species, the interaction is strongly thermochemically repulsive. All solute molecules interact in the energetically unfavorable way with OctOH and CHCl3 in DMF, the effect being much stronger pronounced for chloroform. The most significant result of this work is that it is possible to connect this pair interaction in a highly diluted solution with the solute behavior in the entire range of the binary mixture. The approach proposed is independent of a solute and solvent structure, it provides a good prediction of the energetics of solvation in mixed solvents and can be extended for a lot of other biologically active solutes.  相似文献   

19.
We develop a continuous self-consistent theory of solute-water interactions that allows determination of the hydrophobic layer around a solute molecule of any geometry, with an explicit account of solvent structure described by its correlation function. We compute the mean solvent density profile n(r) surrounding the solute molecule as well as its solvation free energy deltaG. We compare the two-length-scale field theory to the numerical data of Monte Carlo simulations found in the literature for spherical molecules and discuss the possibility of self-consistent adjustment of the free parameters of the theory. In the framework of this approach, we compute the solvation free energies of alkane molecules and the free energy of interaction of two spheres of radius R separated by the distance D. We describe the general setting of the self-consistent account of electrostatic interactions in the framework of our model where the water is considered not as a continuous medium but as a gas of dipoles. We analyze the limiting cases where the proposed theory coincides with the electrostatics of a continuous medium.  相似文献   

20.
The time dependent change in the intermolecular response of solvent molecules following photoexcitation of Coumarin 102 (C102) has been measured in acetonitrile-water binary mixtures. Experiments were performed on mixtures of composition x(CH3CN) = 0.25, 0.50, 0.75, and 1.00. At low water concentrations (x(H2O) < or = 0.25) the solvent response is consistent with previous measurements probing dipolar solvation. With increasing water concentration (x(H2O) > or = 0.50) an additional response is found subsequent to dipolar solvation, exhibited as a rapid gain in the solvent's polarizability on a approximately 250 fs time scale. Monte Carlo simulations of the C102:binary mixture system were performed to quantify the number of hydrogen-bonding interactions between C102 and water. These simulations indicate that the probability of the C102 solute being hydrogen bound with two water molecules, both as donors at the carbonyl site, increases in a correlated fashion with the amplitude of the additional response in the measurements. We conclude that excitation of C102 simultaneously weakens and strengthens hydrogen bonding in complexes with two inequivalently bound waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号