首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of iron(II) complexes (4a-d, 10, and 11) bearing 2,6-bis[(imino)ethyl]pyridine-(3a-d), quinolinaldimine-(8) and thiophenaldimine-(9) based ligands were disclosed as active complexes for the polymerization of tert-butylacrylate (t-BA). After activation with methyl aluminoxane (MAO), the complexes showed moderate to high polymerization activities and produced high molar mass polymers. In addition, the catalyst system 4d/MAO was examined for the polymerization of methyl methacrylate (MMA) and n-vinylcarbazole (NVC). The influence of MAO/Cat. molar ratio, polymerization time, and monomer concentration on the polymerization reaction of methyl methacrylate was explored.In the polymerization of tert-butylacrylate with 2,6-bis[(imino)ethyl]pyridine iron(II)-based catalysts, bulky terminal aliphatic substituents have a favorable influence on the polymerization activity compared to the aromatic ones. This catalyst system was also more active than the quinolinaldimine-, (10) and thiophenaldimine-, (11) based catalysts.  相似文献   

2.
An optimized flow-injection manifold for the chemiluminescence determination of cobalt(II), copper(II), iron(II) and chromium(III) by their catalytic effect on the luminol reaction is described. Detection limits are 0.0006, 0.08, 0.3 and 0.1 ng ml?1, respectively. The suppression effect of several carboxylic acids on the emission intensity is discussed. A procedure for the separation of cobalt(II), copper(II) and iron(II) on a low-capacity, silica-based cation-exchange column, using 5 mM oxalic acid at pH 4.2 as the mobile phase and post-column detection via the luminol reaction, is also described. Detection limits for cobalt(II) and copper(II) are 0.01 and 5 ng ml?1, respectively.  相似文献   

3.
A series of 2-(1-aryliminoethylidene)quinolines (L) were synthesized and used as bidentate N^N ligands in coordinating with metal (cobalt and iron) chlorides to form complexes of the type LMCl2, cobalt(II) (Co1-Co5) and iron(II) (Fe1-Fe5). All organic compounds and metal complexes were fully characterized, and the molecular structures of the representative complexes Co3·DMF and Fe4·DMF were confirmed as distorted bipyramidal geometry at the metal by single-crystal X-ray diffraction. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) under 10 atm ethylene, all complexes showed high activities in ethylene dimerization with activities of up to 1.82 × 106 g mol−1 (Co) h−1 and 5.89 × 105 g mol−1 (Fe) h−1, respectively.  相似文献   

4.
合成了一系列α-二亚胺钴配合物[ArN=C(Me)-(Me)C=NAr]CoCl2(Ar=C6H5, 3a; 4-MeC6H4, 3b; 4-MeOC6H4, 3c; 4-FC6H4, 3d; 4-ClC6H4, 3e; 2-MeC6H4, 3f; 2-EtC6H4, 3g; 2-iPrC6H4, 3h; 2,4,6-Me3C6H2, 3i; 2,6-Et2C6H3, 3j; 2,6-iPrC6H3, 3k)和作为对比的吡啶双亚胺二氯化钴配合物(4a), 并用X射线单晶衍射方法研究了配合物3i, 3k4a的分子结构. α-二亚胺钴配合物在倍半乙基氯化铝的作用下对丁二烯聚合有较高的催化活性,得到的顺式-1,4结构含量达98%,且有较高分子量(Mn≈1×104-1×105)的聚丁二烯. 配体的电子效应影响催化剂的活性及顺式-1,4选择性, 而配体的空间位阻对丁二烯聚合几乎没有影响. 详细研究了聚合时间、聚合温度、烷基铝助催化剂及铝比等条件对丁二烯聚合行为的影响.  相似文献   

5.
6.
Three new mononuclear complexes of nitrogen–sulfur donor sets, formulated as [FeII(L)Cl2] (1), [CoII(L)Cl2] (2) and [NiII(L)Cl2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes 1 and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit FeII/FeIII, CoII/CoIII and NiII/NiIII quasi-reversible redox couples in cyclic voltammograms with E1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively.  相似文献   

7.
We report a computational study at the OPBE/TZP level on the chemical bonding and spin ground-states of mono-nuclear iron(II) complexes with trispyrazolylborate and trispyrazolylmethane ligands. We are in particular interested in how substitution patterns on the pyrazolyl-rings influence the spin-state splittings, and how they can be rationalized in terms of electronic and steric effects. One of the main observations of this study is the large similarity of the covalent metal–ligand interactions for both the borate and methane ligands. Furthermore, we find that the spin-state preference of an individual transition-metal (TM) complex does not always concur with that of an ensemble of TM-complexes in the solid-state. Finally, although the presence of methyl groups at the 3-position of the pyrazolyl groups leads to ligand–ligand repulsion, it is actually the loss of metal–ligand bonding interactions that is mainly responsible for shifts in spin-state preferences.  相似文献   

8.
胡雁鸣  张学全 《高分子科学》2016,34(9):1060-1069
Cobalt and nickel complexes (1a-1d and 2a-2d, respectively) supported by 2-imidate-pyridine ligands were synthesized and used for 1,3-butadiene polymerization. The complexes were characterized by IR and element analysis, and complex 1a was further characterized by single-crystal X-ray diffraction. The solid state structure of complex 1a displayed a distorted tetrahedral geometry. Upon activation with ethylaluminum sesquichloride (EASC), all the complexes showed high activities toward 1,3-butadiene polymerization. The cobalt complexes produced polymers with high cis-1,4 contents and high molecular weights, while the nickel complexes displayed low cis-1,4 selectivity and the resulting polymers had low molecular weights. The catalytic activities of the complexes highly depended on the ligand structure. With the increment of polymerization temperature, the cis-1,4 content and the molecular weight of the resulting polymer decreased.  相似文献   

9.
A series of cobalt(II) complexes having terpyridine derivatives such as 2,2:6,2″-terpyridine (1), 4,4,4″-tBu3-2,2:6,2″-terpyridine (2), 5,5″-Me2-2,2:6,2″-terpyridine (3), 6,6″-Me2-2,2:6,2″-terpyridine (4) and 6,6″-(3,5-Me2C6H3)2-2,2:6,2″-terpyridine (5) was synthesized. The structures of 1, 3, and 4 were confirmed by X-ray crystallography. The coordination sphere around the cobalt center in 1 can be described as pseudo square pyramidal. On the other hand, complex 4 has pseudo trigonal bipyramidal structure. Upon activation with d-MAO (dried-methylaluminoxane), these complexes showed high activities for the polymerization of norbornene (NBE). In particular, polymerization of NBE with 4/d-MAO system at room temperature resulted in quantitative yield within several hours to give the polymers with relatively narrow molecular weight distributions and controlled molecular weight. The polymerizations of NBE with these cobalt catalyst systems proceeded in vinyl addition polymerization, which was confirmed by 1H NMR spectra of the resulting polymers.  相似文献   

10.
Treatment of (2-C5H4N)CH2 3N (TPA) with one equivalent of MCl2 in n-BuOH at elevated temperatures affords the six-coordinate complexes [(TPA)MCl2] (M = Co (1), Fe (2)) and, in the case of CoCl2, the five-coordinate chloride salt [(TPA)CoCl]Cl (3). Conversely, addition of an excess of CoCl2 in the latter reaction leads to [(TPA)CoCl]2[CoCl4] (4) as the only isolable product. Interaction of one equivalent of (2-C5H4N)CH2 2NH (DPA) and MCl2 under similar reaction conditions to that described above affords the dimeric species [(fac-DPA)MCl(μ-Cl)]2 (M = Co (5), Fe (6)), while the bis(ligand) halide salts [(fac-DPA)2M]Cl2 (M = Co (7), Fe (8)) are accessible on addition of two equivalents of DPA. In the presence of air, 6 undergoes oxidation to give [ (fac-DPA)FeCl2 2(μ-O)] (9). Single-crystal X-ray diffraction studies are reported for 1, 2 · MeCN, 3, , 7 · 3MeCN, 8 · 3MeCN and 9.  相似文献   

11.
Preparation of two imidazolium salts, two monomeric nickel(II) and one cobalt(II) complexes bearing imidazolium ligands is described, The solid-state structures of these compounds have determined by single-crystal X-ray diffraction. After activation with methylaluminoxane (MAO) the nickel complexes show moderate catalytic activities of up to 6 × 105 g PE mol−1Ni h−1 for polymerization of ethylene. Catalytic activities, molecular weights have been investigated under the various reaction conditions.  相似文献   

12.
A series of iron(II) bis(triflate) complexes containing tripodal tetradentate nitrogen ligands with pyridine and dimethylamine donors of the type [N(CH(2)Pyr)(3-n)()(CH(2)CH(2)NMe(2))(n)] [n = 0 (tpa, 1), n = 1 (iso-bpmen, 3), n = 2 (Me(4)-benpa, 4), n = 3 (Me(6)-tren, 5)] and the linear tetradentate ligand [(CH(2)Pyr)MeN(CH(2)CH(2))NMe(CH(2)Pyr), (bpmen, 2)] has been prepared. The preferred coordination geometry of these complexes in the solid state and in CH(2)Cl(2) solution changes from six- to five-coordinate in the order from 1 to 5. In acetonitrile, the triflate ligands of all complexes are readily displaced by acetonitrile ligands. The complex [Fe(1)(CH(3)CN)(2)](2+) is essentially low spin at room temperature, whereas ligands with fewer pyridine donors increase the preference for high-spin Fe(II). Both the number of pyridine donors and the spin state of the metal center strongly affect the intensity of a characteristic MLCT band around 400 nm. The catalytic properties of the complexes for the oxidation of alkanes have been evaluated, using cyclohexane as the substrate. Complexes containing ligands 1-3 are more active and selective catalysts, possibly operating via a metal-based oxidation mechanism, whereas complexes containing ligands 4 and 5 give rise to Fenton-type chemistry.  相似文献   

13.
Iron(II) hydrides bearing PSNP tetradentate ligand were synthesized and well characterized. The hydrido iron complex [2H(NCMe)](BF4) is an extremely efficient catalyst for the hydroboration of aldehydes at room temperature.  相似文献   

14.
The series of bidentate N^N iron(II) and cobalt(II) complexes containing 8-(1-aryliminoethylidene) quinaldine derived ligands, 8-[2,6-(R1)2-4-R2-C6H2NC (Me)]-2-Me-C10H5N, were synthesized and characterized by elemental and spectroscopic techniques. The molecular structures of Co1 (R1 = Me, R2 = H), Co3 (R1 = iPr, R2 = H) and Co4 (R1 = R2 = Me) were confirmed as the distorted tetrahedral by single crystal X-ray diffraction. On treatment with modified methylaluminoxane (MMAO), these complexes exhibited good catalytic activities of up to 5.71 × 105 g mol−1(Fe) h−1 for the ethylene dimerization at 30 °C under 10 atm of ethylene, in which iron pre-catalysts produced butenes with a high selectivity for α-butene. The correlation between metal complexes, catalytic activities and the product formed were investigated under various reaction parameters.  相似文献   

15.

The reaction of [Co2(CO)8] with DPPA at room temperature yields a diphosphine bridged product [Co4(CO)12(μ-Ph2-P-C≡C-P-Ph2)2] 1. Heating of 1 at 45°C promoted cleavage of the P-Csp bond with the formation of binuclear, phosphido-bridged σ-π-acetylide isomer complexes [Co2(CO)5(μ-PPh2) (μ-σ-π-C≡C-PPh2 )] 2a, 2b. Heating (60°C) of the complex [CpFe(CO)2CH3] and DPPA affords mono and binuclear acetyl, P-coordinated diphenylphosphinoalkyne metal complexes [CpFe(Ph2P-C≡C-PPh2)CO(COCH3)] 3, [CpFeCO(COCH3)]2-μ-(Ph2P-C≡C-PPh2) 4.  相似文献   

16.
The four title CuII compounds are chloro­[(2‐furyl­methyl)­bis(2‐pyridyl­methyl)­amine‐N,N′,N′′]copper(II) perchlorate, [CuCl(C17H17N3O)]ClO4, (I), chloro{2‐[bis(2‐pyridyl­methyl)­amino]­ethano­lato‐N,N′,N′′,O}­copper(II) hemi­[tetra­chloro­copper(II)], [CuCl(C14H17N3O)][CuCl4]1/2, (II), chloro­[(2‐morpholino­ethyl)­bis(2‐pyridyl­methyl)­amine‐N,N′,N′′,N′′′]copper(II) perchlorate, [CuCl(C18H24N4O)]ClO4, (III), and chloro­[(2‐piperidinyl­ethyl)­bis(2‐pyridyl­methyl)­amine‐N,N′,N′′,N′′′]­copper(II) hexa­fluoro­phosphate, [CuCl(C19H26N4)]­PF6, (IV). They have tripodal potentially tetradentate ligands. In (I), the O atom of the furan moiety weakly coordinates to the Cu atom at a distance of 2.750 (3) Å.  相似文献   

17.
The new cobalt(II) phosphine oxide complexes Co(Cy3PO)2Cl2 (1), Co(Cy3PO)2Br2 (2), Co(Cy3PO)2I2 (3), Co(Ph2CyPO)2Cl2 (4), Co(Ph2CyPO)2Br2 (5), Co(Ph2CyPO)2I2 (6), Co(Ph2EtPO)2Br2 (7), Co(Cy3PO)2(NCS)2 (8) and Co(Cy3PO)2(NO3)2 (9) have been prepared mainly by the reaction of anhydrous CoX2 (X = Cl, Br, I, NCS, NO3) with the appropriate phosphine oxide. The complexes were characterised by single-crystal X-ray crystallography supported by IR and UV-Vis absorption spectroscopy. The structural analyses show that the cobalt(II) centre adopts a distorted tetrahedral coordination geometry except for 9 which displays an octahedral geometry. Systematic structural features of these complexes are explained within this paper.  相似文献   

18.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

19.
Complexes of 2-((3,5-dimethyl)-1H-pyrazol-1-ylmethyl)pyridine (L1), 2-((3,5-ditert-butyl-1H-pyrazol-1-yl)methyl)pyridine (L2), 2-((3,5-diphenyl)-1H-pyrazol-1-yl)methyl)pyridine (L3), 2-((3,5-bis(trifluoromethyl)-1H-pyrazol-1-ylmethyl)pyridine (L4) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (L5) with cobalt(II), iron(II) and nickel(II), Ni(L1)Cl2 (1), Co(L1)Cl2 (2), Fe(L1)Cl2 (3), Ni(L2)Cl2 (4), Ni(L3)Cl2 (5), Co(L3)Cl2 (6), Fe(L3)Cl2 (7), Ni(L4)Cl2 (8) and Ni(L5)Cl2 (9), were used as catalyst precursors to produce vinyl-addition type norbornene polymers. Both the identity of the metal center and nature of ligand affected the polymerization behaviour of the resultant catalysts. Nickel catalysts were generally more active than the corresponding iron and cobalt analogues. The polynorbornene produced have high molecular weights (0.5-2.1 × 106 g/mol) and narrow molecular weight distributions. Analyses of polymer microstructure using NMR and IR spectroscopy confirmed the polymers produced to be vinyl-addition polynorbornene.  相似文献   

20.
In the present paper, the synthesis of new pyridine bis(imine) ligands modified with halogens (Cl, Br, CF3) or alkyl groups (Heptyl, tert-butyl, Phenyl, …) is reported. When coordinated with iron or cobalt dichloride, they yielded complexes which were associated to methylaluminoxane (MAO) to achieve the polymerization of ethylene. It was shown that cobalt catalysts are generally more sensitive to the ligand substitutions than the iron ones. The addition of a chlorine atom on the ligand frame is generally unfavorable. On the contrary, the presence of a bromine atom seems more favorable. Phenyl rings lead to almost completely inactive catalysts, probably because of a too weak coordination to the metal. It was also demonstrated that a mono-substitution of the aryl groups with an electron-withdrawing group (-CF3) is sufficient to yield polymers, whereas, considering the bulkiness of this substituent only, oligomers would have been expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号