共查询到15条相似文献,搜索用时 78 毫秒
1.
还原态氧化石墨烯载Pd纳米催化剂对甲酸氧化的电催化性能 总被引:1,自引:0,他引:1
采用改进的Hummers法氧化石墨后,对其超声剥离成氧化石墨烯水溶液,继之通过乙二醇还原Pd金属离子和氧化石墨烯,得到了还原态氧化石墨烯(RGO)负载Pd纳米催化剂,并用于甲酸的电催化氧化.透射电子显微镜和X射线衍射结果显示:负载于RGO上的Pd粒子平均粒径为3.8nm,其优先在RGO的褶皱和边缘处生长.电化学测试表明:RGO上残存的含氧基团降低了Pd催化剂受CO毒化的程度,Pd/RGO催化剂表现出了较商业化Pd/C更高的电催化活性和更好的稳定性. 相似文献
2.
通过两步还原法制备了Pd/Ni双金属催化剂.由于金属Pd原子在先行还原的Ni纳米粒子表面的外延生长以及其在Ni表面及Pd表面生长表现出的吉布斯自由能差异,最终导致了异结构Pd/Ni纳米粒子的形成.高分辨电子透射显微镜结果证实了异结构的存在,然而X射线衍射测量表明Pd/Ni纳米粒子具有类似于Pd的面心立方结构.制备的Pd/Ni纳米粒子与同等条件下合成的Pd纳米粒子相比对甲酸氧化呈现了更高的电催化活性,而且电催化稳定性也要明显优于纯Pd纳米粒子,证明Pd/Ni双金属催化剂是可选的直接甲酸燃料电池阳极催化剂.双金属催化剂对甲酸氧化电催化活性和稳定性增强可能是Ni原子的修饰改变了Pd粒子表面配位不饱和原子的电子结构所致. 相似文献
3.
用X射线能量色散谱(EDS)、X射线衍射(XRD)谱、拉曼光谱和电化学技术研究和比较了直接甲酸燃料电池(DFAFC)中Vulcan XC-72炭黑载Pd (Pd/XC)和大孔炭载Pd (Pd/MC)催化剂对甲酸氧化的电催化性能. 循环伏安曲线测量表明甲酸在Pd/XC和Pd/MC催化剂电极上主要氧化峰的峰电位基本相同, 在0.15 V左右, 但在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大30%左右. 计时电流曲线测量表明, 在6000 s时, 在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大38%左右, 这些结果说明Pd/MC催化剂对甲酸氧化的电催化活性和稳定性要好于Pd/XC催化剂. 由于Pd/MC和Pd/XC催化剂的Pd粒子平均粒径和相对结晶度相似, 因此, Pd/MC催化剂电催化性能好的原因只能归结于MC大的孔径和高的石墨化程度引起的高电导率. 相似文献
4.
直接甲酸燃料电池(DFAFC)的两大问题是炭载Pd(Pd/C)催化剂对甲酸氧化的电催化稳定性不好和Pd催化剂能催化甲酸分解。发现用NH4F络合还原法制备的NH4F修饰Pd/C催化剂对甲酸氧化的电催化活性要比Pd/C催化剂好大约20%,电催化稳定性也要稍优于Pd/C催化剂。在120 s内和30℃下,甲酸在Pd/C催化剂上分解产生38 mL气体,但在NH4F修饰Pd/C催化剂上基本上不分解,因此NH4F修饰主要能抑制Pd催化剂催化分解甲酸的能力,而且又能在一定程度上提高Pd/C催化剂对甲酸氧化的电催化性能。 相似文献
5.
通过低温氧化法在活性碳表面修饰聚吡咯(PPy-C), 并以PPy-C为载体制备了纳米Pd催化剂(Pd/PPy-C). 采用X射线衍射、扫描电镜、透射电镜等手段对载体PPy-C及催化剂Pd/PPy-C进行了表征, 电化学测试结果表明, Pd/PPy-C催化剂电极不但能够增强催化剂对甲酸催化氧化的活性, 而且还能够大幅度提高催化剂的稳定性, 因此以PPy-C为载体的Pd/PPy-C催化剂是一类具有潜在应用前景的直接甲酸燃料电池阳极催化剂. 通过分析电化学比表面随循环伏安次数的变化及多电势阶跃实验结果表明, 催化剂电极活性衰减的主要原因是载体被氧化及电极表面积累强吸附物种的结果. 相似文献
6.
通过水浴浸泡制备了磷钨酸(PWA)修饰的活性炭(PWA/C), 再通过液相还原法将Pd沉积于PWA/C复合载体上制备了Pd-PWA/C催化剂. 采用X射线能量色散(EDS)谱、 X射线衍射(XRD)谱、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)对产物进行表征. 结果表明, 磷钨酸修饰活性炭不仅能有效降低Pd纳米粒子的粒径, 而且与Pd纳米粒子间发生了强烈作用. 电化学测试结果显示, Pd-PWA/C催化剂对甲酸氧化的电催化活性和稳定性均远优于Pd/C催化剂, 这是由于Pd与PWA/C间的强烈作用既能有效降低CO在催化剂上的吸附强度和吸附量, 又能降低甲酸分解的速率, 从而减弱CO的毒化作用. 相似文献
7.
直接甲酸燃料电池Pd阳极催化剂及其电催化稳定性 总被引:1,自引:0,他引:1
直接甲酸燃料电池(DFAFC)中Pd阳极催化剂对甲酸氧化具有很好的电催化活性, 但电催化稳定性较差, 因此, 对Pd催化剂电催化活性和稳定性的影响原因和机理的研究已经成为DFAFC阳极催化剂的研究重点, 本文综述了DFAFC中Pd催化剂和Pd基复合催化剂的研究和发展概况. 主要介绍了Pd催化剂的优缺点、稳定性及提高稳定性的方法和机理等, 为Pd催化剂和Pd基复合催化剂的实际应用奠定基础. 相似文献
8.
络合还原法制备碳载钯纳米粒子及其电催化甲酸氧化 总被引:1,自引:0,他引:1
应用柠檬酸钠络合还原法制备了粒径小、分布均匀的碳载Pd纳米粒子(Pd/C).由于柠檬酸钠的络合作用,有效地降低了Pd粒子在形成过程中的团聚.经过简单的热处理调控Pd粒子大小,发现随热处理温度的升高,Pd粒子直径由初始的2.7 nm增大到5.8 nm左右.电化学测试表明Pd/C的Pd粒子尺寸越小,电催化甲酸氧化的质量比活性越高,但如当Pd粒径较大,则催化剂呈现出更高的面积比活性.Pd粒径为3.6 nm的催化剂,其电催化甲酸氧化的稳定性最好. 相似文献
9.
以柠檬酸三钠为稳定剂,硼氢化钠为还原剂,制备了碳载型的Pd-Sb复合纳米催化剂(Pd-Sb/C),通过调制不同Pd:Sb摩尔比研究了其对甲酸电催化性能的影响. TEM结果表明,合成的纳米颗粒粒径较小且均匀分散在碳载体表面. XRD和XPS测试表明,Pd-Sb/C中少量的单质态Sb(0)高度分散在Pd颗粒中或表面,形成合金化程度较低的PdSb合金. 电化学测试表明,当Pd:Sb = 20:1时,合成的催化剂对甲酸的催化效能最佳. 与合成的Pd/C和商业Pd/C相比,Pd-Sb/C(20:1)的电流密度分别是Pd/C的2.6倍、商业Pd/C的4.2倍. Pd-Sb/C的整体催化性能得到改善主要归因于适量的单质态Sb(0)引入到Pd中,诱导产生电子效应和“双功能”效应,一方面减小Pd与CO毒性物种之间的吸附作用,另一方面促使Pd表面吸附的CO快速氧化,提高了Pd-Sb/C催化剂的抗CO中毒能力,使得Pd-Sb/C催化剂的整体催化性能得到改善. 相似文献
10.
11.
通过水浴浸泡制备了磷钨酸(PWA)修饰的活性炭(PWA/C),再通过液相还原法将Pd沉积于PWA/C复合载体上制备了Pd-PWA/C催化剂. 采用X射线能量色散(EDS)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对产物进行表征. 结果表明,磷钨酸修饰活性炭不仅能有效降低Pd纳米粒子的粒径,而且与Pd纳米粒子间发生了强烈作用. 电化学测试结果显示,Pd-PWA/C催化剂对甲酸氧化的电催化活性和稳定性均远优于Pd/C催化剂,这是由于Pd与PWA/C间的强烈作用既能有效降低CO在催化剂上的吸附强度和吸附量,又能降低甲酸分解的速率,从而减弱CO的毒化作用. 相似文献
12.
用浸渍的方法制备了硅钨酸(SiWA)修饰的炭载Pd(Pd/C-SiWA)催化剂。 计时电流曲线研究表明,在Pd/C和Pd/C-SiWA催化剂电极上,3000 s时的电流密度分别为0.013和0.082 A/mg,分别为10 s时电流密度的2.5%和14.1%。 结果表明,Pd/C-SiWA催化剂对甲酸氧化的电催化稳定性要远远优于Pd/C催化剂。 这是因为Pd/C催化剂上SiWA的修饰抑制了甲酸的自分解, 从而减小了CO的毒化作用,改进了Pd/C催化剂对甲酸氧化的电催化和稳定性。 相似文献
13.
利用X射线能量色散(EDS)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)和电化学等技术研究了在电解液中添加乙二胺四甲叉膦酸(EDTMP)对甲酸在Pd/C催化剂上电氧化性能的影响. 结果表明, 当EDTMP添加的浓度为0.5 mmol/L时, Pd/C催化剂对甲酸氧化的电催化活性和稳定性最好. 这主要归结于吸附在Pd/C催化剂表面的EDTMP不但能通过基团效应降低CO的吸附量, 还能抑制Pd/C催化剂催化甲酸分解的速率, 从而减少了CO的毒化作用. 但当EDTMP的浓度大于0.5 mmol/L时, 吸附过多的EDTMP反而会占据Pd的活性位点, 降低催化作用. 相似文献
14.
将萘-1-亚甲基膦酸通过π-π堆积作用修饰在多壁碳纳米管(MWCNT)上,然后制备了MWCNT载Pd(Pd/MWCNT)催化剂。 利用Pd和HAuCl4间的置换反应制得MWCNT载Pd-Au(Pd-Au/MWCNT)催化剂。 透射电子显微镜(TEM)、X射线光电子能谱(XPS)和X射线衍射光谱(XRD)测试结果显示,非合金化的Pd-Au纳米粒子均匀分布在MWCNT表面。 循环伏安和计时电流测试显示,非合金化Pd-Au/MWCNT催化剂对甲酸氧化的电催化活性以及稳定性优于Pd/MWCNT催化剂。 相似文献
15.
为了了解(NH4)2SO4,K2SO4和H2SO4电解液对炭载Pd(Pd/C)催化剂对甲酸氧化的电催化性能的影响和机理,用电化学方法测量了Pd/C催化剂在不同电解液中对甲酸氧化的电催化性能。发现在不同电解液中,Pd/C催化剂对甲酸氧化的电催化活性和稳定性按(NH4)2SO4>K2SO4>H2SO4的次序降低。由于在含甲酸的电解液中,不同电解液的pH值差别较小,电解液的pH值只有较小的影响。其次,电解液的电导率对甲酸氧化峰峰电位有一定的影响。最后,由于NH4+起着特殊作用,它能降低CO在Pd/C催化剂电极上的吸附量,因此,在(NH4)2SO4电解液中,Pd/C催化剂对甲酸氧化的电催化性能最好。 相似文献