首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

2.
EuPdGe was prepared from the elements by reaction in a sealed tantalum tube in a high-frequency furnace. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with an experimental magnetic moment of 8.0(1)μB/Eu indicating divalent europium. At low external fields antiferromagnetic ordering is observed at TN=8.5(5) K. Magnetization measurements indicate a metamagnetic transition at a critical field of 1.5(2) T and a saturation magnetization of 6.4(1)μB/Eu at 5 K and 5.5 T. EuPdGe is a metallic conductor with a room-temperature value of 5000±500 μΩ cm for the specific resistivity. 151Eu Mössbauer spectroscopic experiments show a single europium site with an isomer shift of δ=−9.7(1) mm/s at 78 K. At 4.2 K full magnetic hyperfine field splitting with a hyperfine field of B=20.7(5) T is observed. Density functional calculations show the similarity of the electronic structures of EuPdGe and EuPtGe. T-Ge interactions (T=Pd, Pt) exist in both compounds. An ionic formula splitting Eu2+T0Ge2− seems more appropriate than Eu2+T2+Ge4− accounting for the bonding in both compounds. Geometry optimizations of EuTGe (T=Ni, Pt, Pd) show weak energy differences between the two structural types.  相似文献   

3.
The compounds LnSrScO4, where Ln=La, Ce, Pr, Nd and Sm, have been synthesized. Rietveld profile analysis of powder X-ray diffraction data collected at room temperature reveal that the compounds possess a modified K2NiF4-type structure with orthorhombic cell symmetry formed by tilting of the ScO6 octahedra. Variable temperature (25-1200 °C) powder X-ray diffraction data show that at the highest temperatures the structures of LaSrScO4 and PrSrScO4 transform to the regular tetragonal K2NiF4-structure type but the degree of orthorhombicity (c/a) in the unit cells initially increases on heating for all materials, reaching a maximum near 300 °C. This structural behavior is analyzed in terms of relative ionic radii of the various lanthanides and scandium. A general structural model based on tolerance factors has been developed for the family of materials A2BO4 with various A and B cation sizes.  相似文献   

4.
Single crystals of the double perovskite rhenates A2BReO6 (A=Sr, Ba; B=Li, Na) were grown out of molten hydroxide fluxes. Single crystals of orange/yellow Ba2LiReO6, Ba2NaReO6 and Sr2LiReO6 were solved in the cubic, Fm-3m space group with a=8.1214(11) Å, 8.2975(3) Å, and 7.9071(15) Å, respectively, while Sr2NaReO6 was determined to be monoclinic P21/n with a=5.6737(6) Å, b=5.7988(6) Å, c=8.0431(8) Å, and β=90.02(6) °. The cubic structure consists of a rock salt lattice of corner-shared ReO6 and MO6 (M=Li, Na) octahedra which, in the monoclinic structure, are both tilted and rotated. A discrepancy exists between the symmetry of Sr2LiReO6 indicated by the single-crystal refinement of flux-grown crystals (cubic, Fm-3m) and the symmetry indicated by the powder diffraction data collected on polycrystalline samples prepared by the ceramic method (tetragonal, I4/m). It is possible that the cubic crystals are a kinetic product that forms in small quantities at low temperatures, while the powder represents the more stable polymorph that forms at higher reaction temperature.  相似文献   

5.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   

6.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

7.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

8.
We synthesized and characterized a new compound [{Dy(hfac)3}2Pd(dpk)2] ([Dy2Pd]; Hdpk = di-2-pyridyl ketoxime), which is isostructural with the known [Dy2Cu] and [Dy2Ni]. The study of the [Dy2Pd] compound containing diamagnetic Pd ion is indispensable to clarify a contribution of the exchange coupling for a 4f-3d single-molecule magnet behavior. From the ac susceptibility measurements on [Dy2Pd], we obtained Δ/kB = 28.6(11) K and TB = 1.1 K. In accordance with the blocking behavior, the pulsed-field magnetization showed the hysteresis behavior below 1.1 K. These parameters on [Dy2Pd] having SPd = 0 was compared with those of the derivatives having SCu = 1/2 (Δ/kB = 47 K and TB = 1.8 K) and SNi = 1 (Δ/kB = 62(4) K and TB = 2.5 K). The TB and Δ steadily increase with the increasing 3d(4d) spin quantum number.  相似文献   

9.
Experimental data on density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K, while speed of sound values at T = 298.15 K are presented for the binary mixtures of (methylcyclohexane + benzene), methylbenzene (toluene), 1,4-dimethylbenzene (p-xylene), 1,3,5-trimethylbenzene (mesitylene), and methoxybenzene (anisole). From these data of density, viscosity, and refractive index, the excess molar volume, the deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. The computed values have been fitted to Redlich-Kister polynomial equation to derive the coefficients and estimate the standard errors. Variations in the calculated excess quantities for these mixtures have been studied in terms of molecular interactions between the component liquids and the effects of methyl and methoxy group substitution on benzene ring.  相似文献   

10.
Samples of Bi1−xTbxFeO3, with x=0.05, 0.10, 0.15, 0.20 and 0.25, have been synthesised by solid state reaction. The crystal structures of the perovskite phases, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from the R3c symmetry of the parent phase BiFeO3 to orthorhombic Pnma symmetry, which is complete for x=0.20. The x=0.10 and 0.15 samples are bi-phasic. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the Bi3+ lone pair at the A-site. The G-type antiferromagnetic spin structure, the size of the ordered magnetic moment (∼3.8 μB) and the TN (∼375 °C) are relatively insensitive to increasing Tb concentrations at the A-site.  相似文献   

11.
A new ternary borate oxide, K3CdB5O10, has been synthesized by solid-state reaction at 580 °C. The compound crystallizes in the monoclinic space group P21/n with a=7.6707 (7) Å, b=19.1765 (17) Å, c=7.8784 (6) Å, β=115.6083 (49)°, and Z=4. The crystal structure consists of a two-dimensional infinite [CdB5O10] layer, which forms by connecting isolated double ring [B5O10] groups and CdO4 tetrahedra. K atoms filling in the interlayer and intralayer link the layers together and balance charge. The IR spectrum has been studied and confirmed the presence of both BO3 and BO4 groups, and the UV-vis-IR diffuse reflectance spectrum exhibits a band gap of about 3.4 eV. The DSC analysis proves that K3CdB5O10 is a congruent melting compound.  相似文献   

12.
The results of the X-ray structural study for the K4LiH3(SO4)4 single crystal are presented at a wide temperature range. The thermal expansion of the crystal using the X-ray dilatometry and the capacitance dilatometry from 8 to 500 K was carried out. The crystal structures data collection, solution and refinement at 125, 295, 443 and 480 K were performed. The K4LiH3(SO4)4 crystal has tetragonal symmetry with the P41 space group (Z=4) at room temperature as well as at the considered temperature range. The existence of a low-temperature, para-ferroelastic phase transition at about 120 K is excluded. The layered structure of the crystal reflects a cleavage plane parallel to (001) and an anisotropy of the protonic conductivity. The superionic high-temperature phase transition at TS=425 K is isostructural. Nevertheless, taking into account an increase of the SO4 tetrahedra libration above TS, a mechanism of the Grotthus type could be applied for the proton transport explanation.  相似文献   

13.
We have prepared SrFe2/3B1/3O3 (B″=Mo, U, Te, and W) double perovskites in polycrystalline form by ceramic methods. Phases with B″=U, Te and W have been studied by X-ray powder diffraction and the results have been compared with neutron diffraction data available for B″=Mo. At room temperature, the stoichiometric samples crystallize in the tetragonal crystal system (space group I4/m, Z=4). Cell parameters when B″=U, Te and W are a=5.6936(1) Å, c=8.0637(1)Å; a=5.5776(1) Å, c=7.9144(3) Å and a=5.5707(3) Å, c=7.9081(5) Å, respectively.The Mössbauer spectra at room temperature for all compounds show hyperfine parameters belonging to two Fe3+ sites located at lattice positions with different degrees of distortion. This is in agreement with diffraction data that indicate that the series of compounds display different degrees of Fe-site disorder, which increases in the following sequence: Mo<U<Te<W.  相似文献   

14.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

15.
The evolution of the unit-cell parameters of CaZrO3 perovskite, an orthorhombic perovskite belonging to space group Pbnm, have been determined to a pressure of 8.7 GPa at room temperature using single-crystal X-ray diffraction measurements. A fit of a third-order Birch-Murnaghan equation of state to the pressure-volume data yields values of V0=258.04(2) Å3, KT0=154(1) GPa and K0′=5.9(3). Although CaZrO3 perovskite does not exhibit any phase transitions in this pressure range, the compression of the structure is anisotropic with [010] approximately 20% less compressible than either [100] or [001]. Compressional moduli for the unit cell parameters are: Ka0=142(1) GPa and Ka0′=4.4(2), Kb0=177(2) GPa and Kb0′=9.4(5), Kc0=146(2) GPa and Kc0′=5.4(4). Comparison with other orthorhombic Ca-oxide perovskites shows that there is systematic increase in compressional anisotropy with increasing distortion from cubic symmetry.  相似文献   

16.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

17.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

18.
Titanium trifluoride TiF3 has the distorted ReO3 structure composed of corner sharing TiF6 octahedra linked with Ti-F-Ti bridges. Potassium fluoride KF was inserted into the bridges using high-pressure and high-temperature conditions (5 GPa, 1000-1200 °C). When the molar ratio KF/TiF3≥1, a few low dimensional compounds were obtained forming non-bridged F ions. At the composition KF/TiF3=1/2, a new compound KTi2F7 was formed, which crystallizes with the space group Cmmm and the lattice parameters of a=6.371(3), b=10.448(6), c=3.958(2) Å, consisting of edge-sharing pentagonal bipyramids [TiF7] forming ribbons running along the a axis. The ribbons are linked by corners to construct a three-dimensional framework without forming non-bridged F ions. The compound is antiferromagnetic with the Néel temperature TN=75 K, and the optical band gap was 6.4 eV. A new fluoride K2TiF5 (KF/TiF3=2) with the space group Pbcn and the lattice parameters of a=7.4626(2), b=12.9544(4) and c=20.6906(7) Å was also obtained by the high pressure and high temperature treatment (5 GPa at 1000 °C) of a molar mixture of 2 KF+TiF3. The compound contains one-dimensional chains of corner-sharing TiF6 octahedra.  相似文献   

19.
Phase equilibria and crystal structures of ternary compounds were determined in the systems Ce-Pd-B and Yb-Pd-B at 850 °C in the concentration ranges up to 45 and 33 at% of Ce and Yb, respectively, employing X-ray single crystal and powder diffraction. Phase relations in the Ce-Pd-B system at 850 °C are governed by formation of extended homogeneity fields, τ2-CePd8B2−x (0.10<x<0.48); τ3-Ce3Pd25−xB8−y (1.06<x<1.87; 2.20<y<0.05), and CePd3Bx (0<x<0.65) the latter arising from binary CePd3. Crystallographic parameters for the new structure type τ2-CePd8B2−x (space group C2/c, a=1.78104(4) nm, b=1.03723(3) nm, c=1.16314(3), β=118.515(1)° for x=0.46) were established from X-ray single crystal diffraction. The crystal structures of τ2-CePd8B2−x and τ3-Ce3Pd25−xB3−y are connected in a crystallographic group-subgroup relationship. Due to the lack of suitable single crystals, the novel structure of τ1-Ce6Pd47−xB6 (x=0.2, C2/m space group, a=1.03594(2) nm, b=1.80782(3) nm, c=1.01997(2) nm, β=108.321(1)°) was determined from Rietveld refinement of X-ray powder diffraction data applying the structural model obtained from single crystals of homologous La6Pd47−xB6 (x=0.19) (X-ray single crystal diffraction, new structure type, space group C2/m, a=1.03988(2) nm, b=1.81941(5) nm, c=1.02418(2) nm, β=108.168(1)°).The Yb-Pd-B system is characterized by one ternary compound, τ1-Yb2Pd14B5, forming equilibria with extended solution YbPd3Bx, YbB6, Pd5B2 and Pd3B. The crystal structures of both Yb2Pd14B5 and isotypic Lu2Pd14B5 were determined from X-ray Rietveld refinements and found to be closely related to the Y2Pd14B5-type (I41/amd). The crystal structure of binary Yb5Pd2−x (Mn5C2-type) was confirmed from X-ray single crystal data and a slight defect on the Pd site (x=0.06) was established.The three structures τ1-Ce6Pd47−xB6, τ2-CePd8B2−x and τ3-Ce3Pd25−xB8−y are related and can be considered as the packings of fragments observed in Nd2Fe14B structure with different stacking of common structural blocks.Physical properties for Yb2Pd13.6B5 (temperature dependent specific heat, electrical resistivity and magnetization) yielded a predominantly Yb-4f13 electronic configuration, presumably related with a magnetic instability below 2 K. Kondo interaction and crystalline electric field effects control the paramagnetic temperature domain.  相似文献   

20.
Single crystals of Tb4MGa12 (M=Pd, Pt) have been synthesized. The isostructural compounds crystallize in the cubic space group , with Z=2 and lattice parameters: a=8.5940(5) and 8.5850(3) Å for Tb4PdGa12 and Tb4PtGa12, respectively. The crystal structure consists of corner-sharing MGa6 octahedra and TbGa3 cuboctahedra. Magnetic measurements suggest that Tb4PdGa12 is an antiferromagnetic metamagnet with a Néel temperature of 16 K, while the Pt analog orders at TN=12 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号