首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Listeners often only have fragments of speech available to understand the intended message due to competing background noise. In order to maximize successful speech recognition, listeners must allocate their perceptual resources to the most informative acoustic properties. The speech signal contains temporally-varying acoustics in the envelope and fine structure that are present across the frequency spectrum. Understanding how listeners perceptually weigh these acoustic properties in different frequency regions during interrupted speech is essential for the design of assistive listening devices. This study measured the perceptual weighting of young normal-hearing listeners for the envelope and fine structure in each of three frequency bands for interrupted sentence materials. Perceptual weights were obtained during interruption at the syllabic rate (i.e., 4 Hz) and the periodic rate (i.e., 128 Hz) of speech. Potential interruption interactions with fundamental frequency information were investigated by shifting the natural pitch contour higher relative to the interruption rate. The availability of each acoustic property was varied independently by adding noise at different levels. Perceptual weights were determined by correlating a listener's performance with the availability of each acoustic property on a trial-by-trial basis. Results demonstrated similar relative weights across the interruption conditions, with emphasis on the envelope in high-frequencies.  相似文献   

2.
This experiment examined the effects of spectral resolution and fine spectral structure on recognition of spectrally asynchronous sentences by normal-hearing and cochlear implant listeners. Sentence recognition was measured in six normal-hearing subjects listening to either full-spectrum or noise-band processors and five Nucleus-22 cochlear implant listeners fitted with 4-channel continuous interleaved sampling (CIS) processors. For the full-spectrum processor, the speech signals were divided into either 4 or 16 channels. For the noise-band processor, after band-pass filtering into 4 or 16 channels, the envelope of each channel was extracted and used to modulate noise of the same bandwidth as the analysis band, thus eliminating the fine spectral structure available in the full-spectrum processor. For the 4-channel CIS processor, the amplitude envelopes extracted from four bands were transformed to electric currents by a power function and the resulting electric currents were used to modulate pulse trains delivered to four electrode pairs. For all processors, the output of each channel was time-shifted relative to other channels, varying the channel delay across channels from 0 to 240 ms (in 40-ms steps). Within each delay condition, all channels were desynchronized such that the cross-channel delays between adjacent channels were maximized, thereby avoiding local pockets of channel synchrony. Results show no significant difference between the 4- and 16-channel full-spectrum speech processor for normal-hearing listeners. Recognition scores dropped significantly only when the maximum delay reached 200 ms for the 4-channel processor and 240 ms for the 16-channel processor. When fine spectral structures were removed in the noise-band processor, sentence recognition dropped significantly when the maximum delay was 160 ms for the 16-channel noise-band processor and 40 ms for the 4-channel noise-band processor. There was no significant difference between implant listeners using the 4-channel CIS processor and normal-hearing listeners using the 4-channel noise-band processor. The results imply that when fine spectral structures are not available, as in the implant listener's case, increased spectral resolution is important for overcoming cross-channel asynchrony in speech signals.  相似文献   

3.
The purpose of this study was to develop and validate a method of estimating the relative "weight" that a multichannel cochlear implant user places on individual channels, indicating its contribution to overall speech recognition. The correlational method as applied to speech recognition was used both with normal-hearing listeners and with cochlear implant users fitted with six-channel speech processors. Speech was divided into frequency bands corresponding to the bands of the processor and a randomly chosen level of corresponding filtered noise was added to each channel on each trial. Channels in which the signal-to-noise ratio was more highly correlated with performance have higher weights, and conversely, channels in which the correlations were smaller have lower weights. Normal-hearing listeners showed approximately equal weights across frequency bands. In contrast, cochlear implant users showed unequal weighting across bands, and varied from individual to individual with some channels apparently not contributing significantly to speech recognition. To validate these channel weights, individual channels were removed and speech recognition in quiet was tested. A strong correlation was found between the relative weight of the channel removed and the decrease in speech recognition, thus providing support for use of the correlational method for cochlear implant users.  相似文献   

4.
Spectral weighting strategies using a correlational method [R. A. Lutfi, J. Acoust. Soc. Am. 97, 1333-1334 (1995); V. M. Richards and S. Zhu, J. Acoust. Soc. Am. 95, 423-424 (1994)] were measured in ten listeners with sensorineural-hearing loss on a sentence recognition task. Sentences and a spectrally matched noise were filtered into five separate adjacent spectral bands and presented to listeners at various signal-to-noise ratios (SNRs). Five point-biserial correlations were computed between the listeners' response (correct or incorrect) on the task and the SNR in each band. The stronger the correlation between performance and SNR, the greater that given band was weighted by the listener. Listeners were tested with and without hearing aids on. All listeners were experienced hearing aid users. Results indicated that the highest spectral band (approximately 2800-11 000 Hz) received the greatest weight in both listening conditions. However, the weight on the highest spectral band was less when listeners performed the task with their hearing aids on in comparison to when listening without hearing aids. No direct relationship was observed between the listeners' weights and the sensation level within a given band.  相似文献   

5.
Quantifying the intelligibility of speech in noise for non-native listeners   总被引:3,自引:0,他引:3  
When listening to languages learned at a later age, speech intelligibility is generally lower than when listening to one's native language. The main purpose of this study is to quantify speech intelligibility in noise for specific populations of non-native listeners, only broadly addressing the underlying perceptual and linguistic processing. An easy method is sought to extend these quantitative findings to other listener populations. Dutch subjects listening to Germans and English speech, ranging from reasonable to excellent proficiency in these languages, were found to require a 1-7 dB better speech-to-noise ratio to obtain 50% sentence intelligibility than native listeners. Also, the psychometric function for sentence recognition in noise was found to be shallower for non-native than for native listeners (worst-case slope around the 50% point of 7.5%/dB, compared to 12.6%/dB for native listeners). Differences between native and non-native speech intelligibility are largely predicted by linguistic entropy estimates as derived from a letter guessing task. Less effective use of context effects (especially semantic redundancy) explains the reduced speech intelligibility for non-native listeners. While measuring speech intelligibility for many different populations of listeners (languages, linguistic experience) may be prohibitively time consuming, obtaining predictions of non-native intelligibility from linguistic entropy may help to extend the results of this study to other listener populations.  相似文献   

6.
The relative importance of temporal information in broad spectral regions for consonant identification was assessed in normal-hearing listeners. For the purpose of forcing listeners to use primarily temporal-envelope cues, speech sounds were spectrally degraded using four-noise-band vocoder processing Frequency-weighting functions were determined using two methods. The first method consisted of measuring the intelligibility of speech with a hole in the spectrum either in quiet or in noise. The second method consisted of correlating performance with the randomly and independently varied signal-to-noise ratio within each band. Results demonstrated that all bands contributed equally to consonant identification when presented in quiet. In noise, however, both methods indicated that listeners consistently placed relatively more weight upon the highest frequency band. It is proposed that the explanation for the difference in results between quiet and noise relates to the shape of the modulation spectra in adjacent frequency bands. Overall, the results suggest that normal-hearing listeners use a common listening strategy in a given condition. However, this strategy may be influenced by the competing sounds, and thus may vary according to the context. Some implications of the results for cochlear implantees and hearing-impaired listeners are discussed.  相似文献   

7.
The objectives of this prospective and exploratory study are to determine: (1) na?ve listener preference for gender in tracheoesophageal (TE) speech when speech severity is controlled; (2) the accuracy of identifying TE speaker gender; (3) the effects of gender identification on judgments of speech acceptability (ACC) and naturalness (NAT); and (4) the acoustic basis of ACC and NAT judgments. Six male and six female adult TE speakers were matched for speech severity. Twenty na?ve listeners made auditory-perceptual judgments of speech samples in three listening sessions. First, listeners performed preference judgments using a paired comparison paradigm. Second, listeners made judgments of speaker gender, speech ACC, and NAT using rating scales. Last, listeners made ACC and NAT judgments when speaker gender was provided coincidentally. Duration, frequency, and spectral measures were performed. No significant differences were found for preference of male or female speakers. All male speakers were accurately identified, but only two of six female speakers were accurately identified. Significant interactions were found between gender and listening condition (gender known) for NAT and ACC judgments. Males were judged more natural when gender was known; female speakers were judged less natural and less acceptable when gender was known. Regression analyses revealed that judgments of female speakers were best predicted with duration measures when gender was unknown, but with spectral measures when gender was known; judgments of males were best predicted with spectral measures. Na?ve listeners have difficulty identifying the gender of female TE speakers. Listeners show no preference for speaker gender, but when gender is known, female speakers are least acceptable and natural. The nature of the perceptual task may affect the acoustic basis of listener judgments.  相似文献   

8.
In English, voiced and voiceless syllable-initial stop consonants differ in both fundamental frequency at the onset of voicing (onset F0) and voice onset time (VOT). Although both correlates, alone, can cue the voicing contrast, listeners weight VOT more heavily when both are available. Such differential weighting may arise from differences in the perceptual distance between voicing categories along the VOT versus onset F0 dimensions, or it may arise from a bias to pay more attention to VOT than to onset F0. The present experiment examines listeners' use of these two cues when classifying stimuli in which perceptual distance was artificially equated along the two dimensions. Listeners were also trained to categorize stimuli based on one cue at the expense of another. Equating perceptual distance eliminated the expected bias toward VOT before training, but successfully learning to base decisions more on VOT and less on onset F0 was easier than vice versa. Perceptual distance along both dimensions increased for both groups after training, but only VOT-trained listeners showed a decrease in Garner interference. Results lend qualified support to an attentional model of phonetic learning in which learning involves strategic redeployment of selective attention across integral acoustic cues.  相似文献   

9.
Recent results have shown that listeners attending to the quieter of two speech signals in one ear (the target ear) are highly susceptible to interference from normal or time-reversed speech signals presented in the unattended ear. However, speech-shaped noise signals have little impact on the segregation of speech in the opposite ear. This suggests that there is a fundamental difference between the across-ear interference effects of speech and nonspeech signals. In this experiment, the intelligibility and contralateral-ear masking characteristics of three synthetic speech signals with parametrically adjustable speech-like properties were examined: (1) a modulated noise-band (MNB) speech signal composed of fixed-frequency bands of envelope-modulated noise; (2) a modulated sine-band (MSB) speech signal composed of fixed-frequency amplitude-modulated sinewaves; and (3) a "sinewave speech" signal composed of sine waves tracking the first four formants of speech. In all three cases, a systematic decrease in performance in the two-talker target-ear listening task was found as the number of bands in the contralateral speech-like masker increased. These results suggest that speech-like fluctuations in the spectral envelope of a signal play an important role in determining the amount of across-ear interference that a signal will produce in a dichotic cocktail-party listening task.  相似文献   

10.
Perceptual coherence, the process by which the individual elements of complex sounds are bound together, was examined in adult listeners with longstanding childhood hearing losses, listeners with adult-onset hearing losses, and listeners with normal hearing. It was hypothesized that perceptual coherence would vary in strength between the groups due to their substantial differences in hearing history. Bisyllabic words produced by three talkers as well as comodulated three-tone complexes served as stimuli. In the first task, the second formant of each word was isolated and presented for recognition. In the second task, an isolated formant was paired with an intact word and listeners indicated whether or not the isolated second formant was a component of the intact word. In the third task, the middle component of the three-tone complex was presented in the same manner. For the speech stimuli, results indicate normal perceptual coherence in the listeners with adult-onset hearing loss but significantly weaker coherence in the listeners with childhood hearing losses. No differences were observed across groups for the nonspeech stimuli. These results suggest that perceptual coherence is relatively unaffected by hearing loss acquired during adulthood but appears to be impaired when hearing loss is present in early childhood.  相似文献   

11.
This study assessed the acoustic and perceptual effect of noise on vowel and stop-consonant spectra. Multi-talker babble and speech-shaped noise were added to vowel and stop stimuli at -5 to +10 dB S/N, and the effect of noise was quantified in terms of (a) spectral envelope differences between the noisy and clean spectra in three frequency bands, (b) presence of reliable F1 and F2 information in noise, and (c) changes in burst frequency and slope. Acoustic analysis indicated that F1 was detected more reliably than F2 and the largest spectral envelope differences between the noisy and clean vowel spectra occurred in the mid-frequency band. This finding suggests that in extremely noisy conditions listeners must be relying on relatively accurate F1 frequency information along with partial F2 information to identify vowels. Stop consonant recognition remained high even at -5 dB despite the disruption of burst cues due to additive noise, suggesting that listeners must be relying on other cues, perhaps formant transitions, to identify stops.  相似文献   

12.
Speakers may adapt the phonetic details of their productions when they anticipate perceptual difficulty or comprehension failure on the part of a listener. Previous research suggests that a speaking style known as clear speech is more intelligible overall than casual, conversational speech for a variety of listener populations. However, it is unknown whether clear speech improves the intelligibility of fricative consonants specifically, or how its effects on fricative perception might differ depending on listener population. The primary goal of this study was to determine whether clear speech enhances fricative intelligibility for normal-hearing listeners and listeners with simulated impairment. Two experiments measured babble signal-to-noise ratio thresholds for fricative minimal pair distinctions for 14 normal-hearing listeners and 14 listeners with simulated sloping, recruiting impairment. Results indicated that clear speech helped both groups overall. However, for impaired listeners, reliable clear speech intelligibility advantages were not found for non-sibilant pairs. Correlation analyses comparing acoustic and perceptual data indicated that a shift of energy concentration toward higher frequency regions and greater source strength contributed to the clear speech effect for normal-hearing listeners. Correlations between acoustic and perceptual data were less consistent for listeners with simulated impairment, and suggested that lower-frequency information may play a role.  相似文献   

13.
The speech signal contains many acoustic properties that may contribute differently to spoken word recognition. Previous studies have demonstrated that the importance of properties present during consonants or vowels is dependent upon the linguistic context (i.e., words versus sentences). The current study investigated three potentially informative acoustic properties that are present during consonants and vowels for monosyllabic words and sentences. Natural variations in fundamental frequency were either flattened or removed. The speech envelope and temporal fine structure were also investigated by limiting the availability of these cues via noisy signal extraction. Thus, this study investigated the contribution of these acoustic properties, present during either consonants or vowels, to overall word and sentence intelligibility. Results demonstrated that all processing conditions displayed better performance for vowel-only sentences. Greater performance with vowel-only sentences remained, despite removing dynamic cues of the fundamental frequency. Word and sentence comparisons suggest that the speech envelope may be at least partially responsible for additional vowel contributions in sentences. Results suggest that speech information transmitted by the envelope is responsible, in part, for greater vowel contributions in sentences, but is not predictive for isolated words.  相似文献   

14.
Previous research has shown that speech recognition differences between native and proficient non-native listeners emerge under suboptimal conditions. Current evidence has suggested that the key deficit that underlies this disproportionate effect of unfavorable listening conditions for non-native listeners is their less effective use of compensatory information at higher levels of processing to recover from information loss at the phoneme identification level. The present study investigated whether this non-native disadvantage could be overcome if enhancements at various levels of processing were presented in combination. Native and non-native listeners were presented with English sentences in which the final word varied in predictability and which were produced in either plain or clear speech. Results showed that, relative to the low-predictability-plain-speech baseline condition, non-native listener final word recognition improved only when both semantic and acoustic enhancements were available (high-predictability-clear-speech). In contrast, the native listeners benefited from each source of enhancement separately and in combination. These results suggests that native and non-native listeners apply similar strategies for speech-in-noise perception: The crucial difference is in the signal clarity required for contextual information to be effective, rather than in an inability of non-native listeners to take advantage of this contextual information per se.  相似文献   

15.
The word recognition ability of 4 normal-hearing and 13 cochlearly hearing-impaired listeners was evaluated. Filtered and unfiltered speech in quiet and in noise were presented monaurally through headphones. The noise varied over listening situations with regard to spectrum, level, and temporal envelope. Articulation index theory was applied to predict the results. Two calculation methods were used, both based on the ANSI S3.5-1969 20-band method [S3.5-1969 (American National Standards Institute, New York)]. Method I was almost identical to the ANSI method. Method II included a level- and hearing-loss-dependent calculation of masking of stationary and on-off gated noise signals and of self-masking of speech. Method II provided the best prediction capability, and it is concluded that speech intelligibility of cochlearly hearing-impaired listeners may also, to a first approximation, be predicted from articulation index theory.  相似文献   

16.
The present study measured the recognition of spectrally degraded and frequency-shifted vowels in both acoustic and electric hearing. Vowel stimuli were passed through 4, 8, or 16 bandpass filters and the temporal envelopes from each filter band were extracted by half-wave rectification and low-pass filtering. The temporal envelopes were used to modulate noise bands which were shifted in frequency relative to the corresponding analysis filters. This manipulation not only degraded the spectral information by discarding within-band spectral detail, but also shifted the tonotopic representation of spectral envelope information. Results from five normal-hearing subjects showed that vowel recognition was sensitive to both spectral resolution and frequency shifting. The effect of a frequency shift did not interact with spectral resolution, suggesting that spectral resolution and spectral shifting are orthogonal in terms of intelligibility. High vowel recognition scores were observed for as few as four bands. Regardless of the number of bands, no significant performance drop was observed for tonotopic shifts equivalent to 3 mm along the basilar membrane, that is, for frequency shifts of 40%-60%. Similar results were obtained from five cochlear implant listeners, when electrode locations were fixed and the spectral location of the analysis filters was shifted. Changes in recognition performance in electrical and acoustic hearing were similar in terms of the relative location of electrodes rather than the absolute location of electrodes, indicating that cochlear implant users may at least partly accommodate to the new patterns of speech sounds after long-time exposure to their normal speech processor.  相似文献   

17.
Spectral resolution has been reported to be closely related to vowel and consonant recognition in cochlear implant (CI) listeners. One measure of spectral resolution is spectral modulation threshold (SMT), which is defined as the smallest detectable spectral contrast in the spectral ripple stimulus. SMT may be determined by the activation pattern associated with electrical stimulation. In the present study, broad activation patterns were simulated using a multi-band vocoder to determine if similar impairments in speech understanding scores could be produced in normal-hearing listeners. Tokens were first decomposed into 15 logarithmically spaced bands and then re-synthesized by multiplying the envelope of each band by matched filtered noise. Various amounts of current spread were simulated by adjusting the drop-off of the noise spectrum away from the peak (40-5 dBoctave). The average SMT (0.25 and 0.5 cyclesoctave) increased from 6.3 to 22.5 dB, while average vowel identification scores dropped from 86% to 19% and consonant identification scores dropped from 93% to 59%. In each condition, the impairments in speech understanding were generally similar to those found in CI listeners with similar SMTs, suggesting that variability in spread of neural activation largely accounts for the variability in speech perception of CI listeners.  相似文献   

18.
The study of speech from which the temporal fine structure (TFS) has been removed has become an important research area. Common procedures for removing TFS include noise and tone vocoders. In the noise vocoder, bands of noise are modulated by the envelope of the speech within each band, and in the tone vocoder the carrier is a sinusoid at the center of each frequency band. Five different procedures for removing TFS are evaluated in this paper: the noise vocoder, a low-noise noise approach in which the noise envelope is replaced by the speech envelope in each frequency band, phase randomization within each band, the tone vocoder, and sinusoidal modeling with random phase. The effects of TFS modification on the speech envelope are evaluated using an index based on the envelope time-frequency modulation. The results show that for all of the TFS techniques implemented in this study, there is a substantial loss in the accuracy of reproduction of the envelope time-frequency modulation. The tone vocoder gives the best accuracy, followed by the procedure that replaces the noise envelope with the speech envelope in each band.  相似文献   

19.
Speech perception in the presence of another competing voice is one of the most challenging tasks for cochlear implant users. Several studies have shown that (1) the fundamental frequency (F0) is a useful cue for segregating competing speech sounds and (2) the F0 is better represented by the temporal fine structure than by the temporal envelope. However, current cochlear implant speech processing algorithms emphasize temporal envelope information and discard the temporal fine structure. In this study, speech recognition was measured as a function of the F0 separation of the target and competing sentence in normal-hearing and cochlear implant listeners. For the normal-hearing listeners, the combined sentences were processed through either a standard implant simulation or a new algorithm which additionally extracts a slowed-down version of the temporal fine structure (called Frequency-Amplitude-Modulation-Encoding). The results showed no benefit of increasing F0 separation for the cochlear implant or simulation groups. In contrast, the new algorithm resulted in gradual improvements with increasing F0 separation, similar to that found with unprocessed sentences. These results emphasize the importance of temporal fine structure for speech perception and demonstrate a potential remedy for difficulty in the perceptual segregation of competing speech sounds.  相似文献   

20.
Binaural detection was examined for a signal presented in a narrow band of noise centered on the on-signal masking band (OSB) or in the presence of flanking noise bands that were random or comodulated with respect to the OSB. The noise had an interaural correlation of 1.0 (No), 0.99 or 0.95. In No noise, random flanking bands worsened Spi detection and comodulated bands improved Spi detection for some listeners but had no effect for other listeners. For the 0.99 or 0.95 interaural correlation conditions, random flanking bands were less detrimental to Spi detection and comodulated flanking bands improved Spi detection for all listeners. Analyses based on signal detection theory indicated that the improvement in Spi thresholds obtained with comodulated bands was not compatible with an optimal combination of monaural and binaural cues or to across-frequency analyses of dynamic interaural phase differences. Two accounts consistent with the improvement in Spi thresholds in comodulated noise were (1) envelope information carried by the flanking bands improves the weighting of binaural cues associated with the signal; (2) the auditory system is sensitive to across-frequency differences in ongoing interaural correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号