首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spectroscopy and predissociation dynamics of (H2O)2 and Ar-H2O are investigated with vibrationally mediated dissociation (VMD) techniques, wherein upsilon(OH) = 2 overtones of the complexes are selectively prepared with direct infrared pumping, followed by 193 nm photolysis of the excited H2O molecules. As a function of relative laser timing, the photolysis breaks H2O into OH and H fragments either (i) directly inside the complex or (ii) after the complex undergoes vibrational predissociation, with the nascent quantum state distribution of the OH photofragment probed via laser-induced fluorescence. This capability provides the first rotationally resolved spectroscopic analysis of (H2O)2 in the first overtone region and vibrational predissociation dynamics of water dimer and Ar-water clusters. The sensitivity of the VMD approach permits several upsilon(OH) = 2 overtone bands to be observed, the spectroscopic assignment of which is discussed in the context of recent anharmonic theoretical calculations.  相似文献   

2.
In this work, the interactions of aragonite and organic matrix in nacre with water are investigated using two-dimensional (2D) Fourier transform infrared (FTIR) spectroscopy. The 2D-FTIR analysis revealed four bands in the OH stretching region at around 3550, 3445, 3272 and 3074 cm(-1). Two additional bands were found at around 3616 and 3282 cm(-1) after deconvolution of the nacre spectrum. The bands at around 3616 and 3550 cm(-1) are assigned to asymmetric and symmetric OH stretching of partially hydrogen bonded water molecules. The bands at around 3445 and 3272 cm(-1) are assigned to asymmetric and symmetric OH stretching of water molecules fully hydrogen bonded with surrounding water molecules. Presence of above bands in the nacre spectrum suggests that water, in form of clusters, is present in protein matrix and aragonite pores. Water may also hydrogen bond with the organic matrix. The bands observed at 3282 and 3074 cm(-1) are assigned to asymmetric and symmetric OH stretching of water molecules, chemisorbed on surfaces of aragonite platelets. Polarization experiments suggest that H-O-H plane of water molecules is along to c-axis of aragonite platelets.  相似文献   

3.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-acetylene dimer were studied following excitation in the asymmetric CH stretch. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the asymmetric CH stretch fundamental, ammonia fragments were detected by 2 + 1 REMPI via the B1E' <-- X1A1' and C'1A1' <-- X1A1' transitions. The fragments' center-of-mass (c.m.) translational energy distributions were determined from images of selected rotational levels of ammonia with one or two quanta in the symmetric bend (nu2 umbrella mode) and were converted to rotational-state distributions of the acetylene co-fragment. The latter is always generated with one or two quanta of bending excitation. All the distributions could be fit well when using a dimer dissociation energy of D0 = 900 +/- 10 cm(-1). Only channels with maximum translational energy <150 cm(-1) are observed. The rotational excitation in the ammonia fragments is modest and can be fit by temperatures of 150 +/- 50 and 50 +/- 20 K for 1nu2 and 2nu2, respectively. The rotational distributions in the acetylene co-fragment pair-correlated with specific rovibrational states of ammonia appear statistical as well. The vibrational-state distributions, however, show distinct state specificity among channels with low translational energy release. The predominant channel is NH3(1nu2) + C2H2(2nu4 or 1nu4 + 1nu5), where nu4 and nu5 are the trans- and cis-bend vibrations of acetylene, respectively. A second observed channel, with much lower population, is NH3(2nu2) + C2H2(1nu4). No products are generated in which the ammonia is in the vibrational ground state or the asymmetric bend (1nu4) state, nor is acetylene ever generated in the ground vibrational state or with CC stretch excitation. The angular momentum (AM) model of McCaffery and Marsh is used to estimate impact parameters in the internal collisions that give rise to the observed rotational distributions. These calculations show that dissociation takes place from bent geometries, which can also explain the propensity to excite fragment bending levels. The low recoil velocities associated with the observed channels facilitate energy exchange in the exit channel, which results in statistical-like fragment rotational distributions.  相似文献   

4.
5.
We present infrared photodissociation spectra of two protonated peptides that are cooled in a ~10 K quadrupole ion trap and "tagged" with weakly bound H(2) molecules. Spectra are recorded over the range of 600-4300 cm(-1) using a table-top laser source, and are shown to result from one-photon absorption events. This arrangement is demonstrated to recover sharp (Δν ~6 cm(-1)) transitions throughout the fingerprint region, despite the very high density of vibrational states in this energy range. The fundamentals associated with all of the signature N-H and C=O stretching bands are completely resolved. To address the site-specificity of the C=O stretches near 1800 cm(-1), we incorporated one (13)C into the tripeptide. The labeling affects only one line in the complex spectrum, indicating that each C=O oscillator contributes a single distinct band, effectively "reporting" its local chemical environment. For both peptides, analysis of the resulting band patterns indicates that only one isomeric form is generated upon cooling the ions initially at room temperature into the H(2) tagging regime.  相似文献   

6.
The IR spectra of the title compound in the polycrystalline state, both normal and with different degrees of deuteration, were obtained at room and liquid air temperatures. The anion and water molecules' vibrational bands were assigned. The data show that the anion is located in sites of C1 symmetry and that the hydration water molecules are strongly asymmetric, forming weak hydrogen bonds. At least one of the water molecules is coordinated to the cation.  相似文献   

7.
Mid-infrared attenuated total internal reflection (ATR) spectra of H(2)16O, H(2)18O and D(2)16O in the liquid state were obtained and normal coordinate analysis was performed based on the potential energy surface obtained from density functional theory (DFT) calculations. Fits of the spectra to multiple Gaussians showed a consistent fit of three bands for the bending region and five bands for the stretching region for three isotopomers, H(2)16O, H(2)18O and D(2)16O. The results are consistent with previous work and build on earlier studies by the inclusion of three isotopomers and mixtures using the advantage of single-pass ATR to obtain high quality spectra of the water stretching bands. DFT calculation of the vibrational spectrum of liquid water was conducted on seven model systems, two systems with periodic boundary conditions (PBC) consisting of four and nine H(2)16O molecules, and five water clusters consisting of 4, 9, 19, 27 and 32 H(2)16O molecules. The PBC and cluster models were used to obtain a representation of bulk water for comparison with experiment. The nine-water PBC model was found to give a good fit to the experimental line shapes. A difference is observed in the broadening of the water bending and stretching vibrations indicative of a difference in the rate of pure dephasing. The nine-water PBC calculation was also used to calculate the wavenumber shifts observed in the water isotopomers.  相似文献   

8.
Infrared photodissociation spectroscopy is reported for mass-selected Ni+ (H2O)n complexes in the O-H stretching region up to cluster sizes of n = 25. These clusters fragment by the loss of one or more intact water molecules, and their excitation spectra show distinct bands in the region of the symmetric and asymmetric stretches of water. The first evidence for hydrogen bonding, indicated by a broad band strongly red-shifted from the free OH region, appears at the cluster size of n = 4. At larger cluster sizes, additional red-shifted structure evolves over a broader wavelength range in the hydrogen-bonding region. In the free OH region, the symmetric stretch gradually diminishes in intensity, while the asymmetric stretch develops into a closely spaced doublet near 3700 cm(-1). The data indicate that essentially all of the water molecules are in a hydrogen-bonded network by the size of n = 10. However, there is no evidence for the formation of clathrate structures seen recently via IR spectroscopy of protonated water clusters.  相似文献   

9.
In order to be able to fully understand the vibrational dynamics of monosaccharide sugars, we started with hydroxyacetone CH2OHCOCH3, and glycolaldehyde CH2OHCOH, which are among the smallest molecules that contain hydroxyl and carbonyl group on neighboring carbon atoms. This sterical configuration is characteristic for saccharides and determines their biochemical activity. In this work vibrational analysis of hydroxyacetone was undertaken by performing the normal coordinate analysis for glycolaldehyde first, and transferring these force constants to hydroxyacetone. The observed Raman and infrared bands for 90 wt.% solution of hydroxyacetone in water (acetol) were used as a first approximation for the bands of free hydroxyacetone. The number of observed Raman and infrared bands for acetol exceeds the number of calculated values for the most stable hydroxyacetone conformer with Cs symmetry, which suggests more than one conformer of hydroxyacetone in water solution. In particular, there are two bands both in infrared (1083 and 1057 cm(-1)) and in Raman spectrum (1086.5 and 1053 cm(-1)) that are assigned to the CO stretching mode and this is one of the indicators of several hydroxyacetone conformers in the solution. Additional information was obtained from low temperature Raman spectra: at 240 K a broad asymmetric band centered around 280 cm(-1) appears, suggesting a disorder in the orientation of hydroxyl groups. Glassy state forms at approximately 150K. The broad band at 80 cm(-1) is assigned to frozen torsions of hydroxymethyl groups.  相似文献   

10.
A generalized Kohn-Sham (GKS) approach to density functional theory (DFT), based on the Baer-Neuhauser-Livshits range-separated hybrid, combined with ab initio motivated range-parameter tuning is used to study properties of water dimer and pentamer cations. The water dimer is first used as a benchmark system to check the approach. The present brand of DFT localizes the positive charge (hole), stabilizing the proton transferred geometry in agreement with recent coupled-cluster calculations. Relative energies of various conformers of the water dimer cation compare well with previously published coupled cluster results. The GKS orbital energies are good approximations to the experimental ionization potentials of the system. Low-lying excitation energies calculated from time-dependent DFT based on the present method compare well with recently published high-level "equation of motion-coupled-cluster" calculations. The harmonic frequencies of the water dimer cation are in good agreement with experimental and wave function calculations where available. The method is applied to study the water pentamer cation. Three conformers are identified: two are Eigen type and one is a Zundel type. The structure and harmonic vibrational structure are analyzed. The ionization dynamics of a pentamer water cluster at 0 K shows a fast <50 fs transient for transferring a proton from one of the water molecules, releasing a hydroxyl radical and creating a protonated tetramer carrying the excess hole.  相似文献   

11.
Density functional theory and classical molecular dynamics simulations are used to investigate the vibrational spectra of caffeine and theophylline anhydrous and monohydrate molecules and those of their crystalline anhydrous and monohydrated states, with emphasis in the terahertz region of the spectra. To better understand the influence of water in the monohydrate crystal spectra, we analyze the vibrational spectra of water monomer, dimer, tetramer, and pentamer, and also those of liquid water at two different temperatures. In small water clusters, we observe the progressive addition of translational and librational modes to the terahertz region of the spectra. The water spectra predicted by rigid and flexible water models is examined with classical molecular dynamics, and the respective peaks, especially in the terahertz region, are compared with those found in the small clusters. Similar analysis done for caffeine and theophylline monohydrate molecules using density functional theory clearly shows the presence of water modes in the librational states and in the water stretching region. Molecular dynamics of caffeine and theophylline anhydrous and monohydrate crystals reveal the influence of vibrations from the molecule-molecule (caffeine or theophylline) crystal stacks and those from the water-molecule interactions found in the monohydrate molecules and new modes from molecule-molecule, water-molecule, and water-water hydrogen bonding interactions arising from collective effects in the crystal structure. Findings illustrate challenges of terahertz technology for the detection of specific substances in condensed phases.  相似文献   

12.
Infrared (IR) absorption in the 1000–3700 cm−1 range and 1H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7+O3, in acetonitrile. The core H7+O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7+O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7+O3 in the OH stretch region, which reaffirms the assignment of the H7+O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7+O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7+O3 structures may support proton transport within larger water solvates.  相似文献   

13.
Aqueous acetic acid solutions have been studied by vibrational sum frequency spectroscopy (VSFS) in order to acquire molecular information about the liquid-gas interface. The concentration range 0-100% acetic acid has been studied in the CH/OH and the C-O/C=O regions, and in order to clarify peak assignments, experiments with deuterated acetic acid and water have also been performed. Throughout the whole concentration range, the acetic acid is proven to be protonated. It is explicitly shown that the structure of a water surface becomes disrupted even at small additions of acetic acid. Furthermore, the spectral evolution upon increasing the concentration of acetic acid is explained in terms of the different complexes of acetic acid molecules, such as the hydrated monomer, linear dimer, and cyclic dimer. In the C=O region, the hydrated monomer is concluded to give rise to the sum frequency (SF) signal, and in the CH region, the cyclic dimer contributes to the signal as well. The combination of results from the CH/OH and the C-O/C=O regions allows a thorough characterization of the behavior of the acetic acid molecules at the interface to be obtained.  相似文献   

14.
The vibrational IR spectra in the O-H stretching region are computed for water clusters containing 6-22, 28, and 30 molecules using quantum-chemical calculations (B3LYP and an augmented basis set). For the cluster with 20 molecules, several different structures were studied. The vibrational spectrum was partitioned into contributions from different molecules according to their coordination properties. The frequency shifts depend on the number of donated/accepted H-bonds primarily of the two molecules participating in the H-bond, but also of the surrounding molecules H-bonding to these molecules. The frequencies of H-bonds between two molecules of the same coordination type are spread over a broad interval. The most downshifted hydrogen-bond vibrations are those donated by a single-donor 3-coordinated molecule where the H-bond is accepted by a single-acceptor molecule. The H-bonded neighbors influence the downshift, and their contribution can be rationalized in the same way as for the central dimer. Single donors/acceptors cause larger downshifts than 4-coordinated molecules, and the least downshift is obtained for double donors/acceptors. This result is at variance with the conception that experimental liquid water spectra may be divided into components for which larger downshifts imply higher H-bond coordination. A mean spectral contribution for each coordination type for the donor molecule was derived and fitted to the experimental liquid water IR spectrum, which enabled an estimation of the distribution of H-bond types and average number of H-bonds (3.0 +/- 0.2) in the liquid.  相似文献   

15.
We report vibrational lifetime measurements of the OH stretch vibration of interfacial water in contact with lipid monolayers, using time-resolved vibrational sum frequency (VSF) spectroscopy. The dynamics of water in contact with four different lipids are reported and are characterized by vibrational relaxation rates measured at 3200, 3300, 3400, and 3500 cm(-1). We observe that the water molecules with an OH frequency ranging from 3300 to 3500 cm(-1) all show vibrational relaxation with a time constant of T(1) = 180 ± 35 fs, similar to what is found for bulk water. Water molecules with OH groups near 3200 cm(-1) show distinctly faster relaxation dynamics, with T(1) < 80 fs. We successfully model the data by describing the interfacial water containing two distinct subensembles in which spectral diffusion is, respectively, rapid (3300-3500 cm(-1)) and absent (3200 cm(-1)). We discuss the potential biological implications of the presence of the strongly hydrogen-bonded, rapidly relaxing water molecules at 3200 cm(-1) that are decoupled from the bulk water system.  相似文献   

16.
Pair correlated fragment rovibrational distributions are presented following vibrational predissociation of the C2H2-DCl van der Waals dimer initiated by excitation of the asymmetric (asym) C-H stretch. The only observed fragmentation pathways are DCl (v= 0; j= 6-9)+ C2H2(nu2= 1; j= 1-5). These and previously reported data on the related C2H2-HCl species are analysed using the angular momentum (AM) method. Calculations accurately reproduce fragment rovibrational distributions following dissociation of the C2H2-HCl dimer initiated either by excitation of the asym C-H stretch or via the HCl stretch, and those from C2H2-DCl initiated via asym C-H stretch excitation. The calculations demonstrate that the dimer is bent at the moment of dissociation. Several geometries are found that lead to H-bond breakage via a clearly identified set of fragment quantum states. The results suggest a hierarchy in the disposal of excess energy and angular momentum between fragment vibration, rotation and recoil. Deposition of the largest portion of energy into a C2H2 vibrational state sets an upper limit on HCl rotation, which then determines the energy and AM remaining for C2H2 rotation and fragment recoil. Acceptor C2H2 vibrational modes follow a previously noted propensity, implying that the dissociating impulse must be able to induce appropriate nuclear motions both in the acceptor vibration and in rotation of the C2H2 fragment.  相似文献   

17.
Structures of mono- and dihydrated adenine dimers and their cations were calculated using B3LYP density functional theory with the 6-31+G(d,p) basis set, in order to help understand photofragmentation experiments of hydrated adenine dimers from the energetics point of view. Several important pathways leading to the major fragmentation product, protonated adenine ion (AH(+)), thermodynamically at minimum costs were investigated at the ground-state electronic potential surface of hydrated adenine dimer cations. Our calculations suggest that the proton transfer from one adenine moiety to the other in hydrated dimer ions readily occurs with negligible barriers in normal hydration conditions. In asymmetrically hydrated ions, however, the proton transfer to more hydrated adenine moieties is kinetically hindered due to heightened transition-state barriers, while the other way is still barrierless. Such directional preference in proton transfer may be characterized as a unique dimer ion property, stemming from the difference in basicity of the two nitrogen atoms involved in the double hydrogen bond that would be equivalent without hydration. We also found that dimer cleavage requires about 4 times larger energy than evaporation of individual water molecules, so it is likely that most solvent molecules evaporate before the eventual dimer cleavage when available internal energy is limited.  相似文献   

18.
19.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded HCl-H(2)O dimer was studied following excitation of the dimer's HCl stretch by detecting the H(2)O fragment. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the HCl stretch of the dimer, H(2)O fragments were detected by 2 + 1 REMPI via the C (1)B(1) (000) ← X (1)A(1) (000) transition. REMPI spectra clearly show H(2)O from dissociation produced in the ground vibrational state. The fragments' center-of-mass (c.m.) translational energy distributions were determined from images of selected rotational states of H(2)O and were converted to rotational state distributions of the HCl cofragment. The distributions were consistent with the previously measured dissociation energy of D(0) = 1334 ± 10 cm(-1) and show a clear preference for rotational levels in the HCl fragment that minimize translational energy release. The usefulness of 2 + 1 REMPI detection of water fragments is discussed.  相似文献   

20.
Four-wave mixing measurements are carried out on I(2)-doped ice, prepared by quench condensing the premixed vapor at 128 K. Coherent vibrational dynamics is observed in two distinct ensembles. The first is ascribed to trapping in asymmetric polar cages in which, as in water, the valence absorption of the molecule is blueshifted by 3500 cm(-1), predissociation of the B state is complete upon the first extension of the molecular bond, and the vibrational frequency in the ground state (observed through coherent anti-Stokes Raman scattering) is reduced by 6.5%. The effect is ascribed to polarization of the molecule. The implied local field and the ionicity of the molecule are extracted, to conclude that the molecule is oxygen bonded to one water molecule on one side and hydrogen bonded on the other side. The second ensemble is characterized by the transient grating signal, which shows coherent vibrational dynamics on the B state. The small predissociation rate in this site suggests a symmetric cage in which the local electric field undergoes effective cancellation; and consistent with this, the extracted blueshift of the valence transition in this site (approximately 1500 cm(-1)) coincides with that observed in clathrate hydrates of iodine. Remarkably, in this site, the vibrational period of the B state packet coherently stretches from an initial value of 245 fs to 325 fs in the course of five oscillations (1.3 ps), indicative of vibrationally adiabatic following of the cage expansion. The dynamics is characteristic of a molecule trapped in a tight symmetric cage, with a soft cage coordinate that relaxes without eliciting elastic response. Enclathration in low-density amorphous ice is concluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号