首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by comparing 1D NMR spectra of compound mixtures in the presence of a target immobilized on a solid support to a control sample. The method has been validated by the detection of a variety of ligands for protein and nucleic acid targets (K(D) from 60 to 5000 muM). The ligand binding capacity of a protein was undiminished after 2000 different compounds had been applied, indicating the potential to apply the assay for screening typical fragment libraries. TINS can be used in competition mode, allowing rapid characterization of the ligand binding site. TINS may allow screening of targets that are difficult to produce or that are insoluble, such as membrane proteins.  相似文献   

2.
Virtual screening benchmarking studies were carried out on 11 targets to evaluate the performance of three commonly used approaches: 2D ligand similarity (Daylight, TOPOSIM), 3D ligand similarity (SQW, ROCS), and protein structure-based docking (FLOG, FRED, Glide). Active and decoy compound sets were assembled from both the MDDR and the Merck compound databases. Averaged over multiple targets, ligand-based methods outperformed docking algorithms. This was true for 3D ligand-based methods only when chemical typing was included. Using mean enrichment factor as a performance metric, Glide appears to be the best docking method among the three with FRED a close second. Results for all virtual screening methods are database dependent and can vary greatly for particular targets.  相似文献   

3.
A virtual screening method is presented that is grounded on a receptor-derived pharmacophore model termed "virtual ligand" or "pseudo-ligand". The model represents an idealized constellation of potential ligand sites that interact with residues of the binding pocket. For rapid virtual screening of compound libraries the potential pharmacophore points of the virtual ligand are encoded as an alignment-free correlation vector, avoiding spatial alignment of pharmacophore features between the pharmacophore query (i.e., the virtual ligand) and the candidate molecule. The method was successfully applied to retrieving factor Xa inhibitors from a Ugi three-component combinatorial library, and yielded high enrichment of actives in a retrospective search for cyclooxygenase-2 (COX-2) inhibitors. The approach provides a concept for "de-orphanizing" potential drug targets and identifying ligands for hitherto unexplored or allosteric binding pockets.  相似文献   

4.
Structure-based virtual screening (SBVS) utilizing docking algorithms has become an essential tool in the drug discovery process, and significant progress has been made in successfully applying the technique to a wide range of receptor targets. In silico validation of virtual screening protocols before application to a receptor target using a corporate or commercially available compound collection is key to establishing a successful process. Ultimately, retrieval of a set of active compounds from a database of inactives is required, and the metric of enrichment (E) is habitually used to discern the quality of separation of the two. Numerous reports have addressed the performance of docking algorithms with regard to the quality of binding mode prediction and the issue of postprocessing "hit lists" of docked ligands. However, the impact of ligand database preprocessing has yet to be examined in the context of virtual screening and prioritization of compounds for biological evaluation. We provide an insight into the implications of cheminformatic preprocessing of a validation database of compounds where multiple protonated, tautomeric, stereochemical, and conformational states have been enumerated. Several commonly used methods for the generation of ligand conformations and conformational ensembles are examined, paired with an exhaustive rigid-body algorithm for the docking of different "multimeric" compound representations to the ligand binding site of the human estrogen receptor alpha. Chemgauss, a shapegaussian scoring function with intrinsic chemical knowledge, was combined with PLP as a consensus-scoring scheme to rank output from the docking protocol and enrichment rates calculated for each screen. The overheads of CPU consumption and the effect on relative database size (disk requirement) for each of the protocols employed are considered. Assessment of these parameters indicates that SBVS enrichments are highly dependent on the initial cheminformatic treatment(s) used in database construction. The interplay of SMILES representations, stereochemical information, protonation state enumeration, and ligand conformation ensembles are critical in achieving optimum enrichment rates in such screening.  相似文献   

5.
Pharmacophore modeling and parallel screening for PPAR ligands   总被引:1,自引:0,他引:1  
We describe the generation and validation of pharmacophore models for PPARs, as well as a large scale validation of the parallel screening approach by screening PPAR ligands against a large database of structure-based models. A large test set of 357 PPAR ligands was screened against 48 PPAR models to determine the best models for agonists of PPAR-alpha, PPAR-delta, and PPAR-gamma. Afterwards, a parallel screen was performed using the 357 PPAR ligands and 47 structure-based models for PPARs, which were integrated into a 1537 models comprising in-house pharmacophore database, to assess the enrichment of PPAR ligands within the PPAR hypotheses. For these purposes, we categorized the 1537 database models into 181 protein targets and developed a score that ranks the retrieved targets for each ligand. Thus, we tried to find out if the concept of parallel screening is able to predict the correct pharmacological target for a set of compounds. The PPAR target was ranked first more often than any other target. This confirms the ability of parallel screening to forecast the pharmacological active target for a set of compounds.  相似文献   

6.
The potential for therapeutic specificity in regulating diseases has made cannabinoid (CB) receptors one of the most important G-protein-coupled receptor (GPCR) targets in search for new drugs. Considering the lack of related 3D experimental structures, we have established a structure-based virtual screening protocol to search for CB2 bioactive antagonists based on the 3D CB2 homology structure model. However, the existing homology-predicted 3D models often deviate from the native structure and therefore may incorrectly bias the in silico design. To overcome this problem, we have developed a 3D testing database query algorithm to examine the constructed 3D CB2 receptor structure model as well as the predicted binding pocket. In the present study, an antagonist-bound CB2 receptor complex model was initially generated using flexible docking simulation and then further optimized by molecular dynamic and mechanical (MD/MM) calculations. The refined 3D structural model of the CB2-ligand complex was then inspected by exploring the interactions between the receptor and ligands in order to predict the potential CB2 binding pocket for its antagonist. The ligand-receptor complex model and the predicted antagonist binding pockets were further processed and validated by FlexX-Pharm docking against a testing compound database that contains known antagonists. Furthermore, a consensus scoring (CScore) function algorithm was established to rank the binding interaction modes of a ligand on the CB2 receptor. Our results indicated that the known antagonists seeded in the testing database can be distinguished from a significant amount of randomly chosen molecules. Our studies demonstrated that the established GPCR structure-based virtual screening approach provided a new strategy with a high potential for in silico identifying novel CB2 antagonist leads based on the homology-generated 3D CB2 structure model.  相似文献   

7.
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.  相似文献   

8.
Shape-based methods for aligning and scoring ligands have proven to be valuable in the field of computer-aided drug design. Here, we describe a new shape-based flexible ligand superposition and virtual screening method, Phase Shape, which is shown to rapidly produce accurate 3D ligand alignments and efficiently enrich actives in virtual screening. We describe the methodology, which is based on the principle of atom distribution triplets to rapidly define trial alignments, followed by refinement of top alignments to maximize the volume overlap. The method can be run in a shape-only mode or it can include atom types or pharmacophore feature encoding, the latter consistently producing the best results for database screening. We apply Phase Shape to flexibly align molecules that bind to the same target and show that the method consistently produces correct alignments when compared with crystal structures. We then illustrate the effectiveness of the method for identifying active compounds in virtual screening of eleven diverse targets. Multiple parameters are explored, including atom typing, query structure conformation, and the database conformer generation protocol. We show that Phase Shape performs well in database screening calculations when compared with other shape-based methods using a common set of actives and decoys from the literature.  相似文献   

9.
Computationally efficient structure-based virtual screening methods have recently been reported that seek to find effective means to utilize experimental structure information without employing detailed molecular docking calculations. These tools can be coupled with efficient experimental screening technologies to improve the probability of identifying hits and leads for drug discovery research. Commercial software ROCS (rapid overlay of chemical structures) from Open Eye Scientific is such an example, which is a shape-based virtual screening method using the 3D structure of a ligand, typically from a bound X-ray costructure, as the query. We report here the development of a new structure-based pharmacophore search method (called Shape4) for virtual screening. This method adopts a variant of the ROCS shape technology and expands its use to work with an empty crystal structure. It employs a rigorous computational geometry method and a deterministic geometric casting algorithm to derive the negative image (i.e., pseudoligand) of a target binding site. Once the negative image (or pseudoligand) is generated, an efficient shape comparison algorithm in the commercial OE SHAPE Toolkit is adopted to compare and match small organic molecules with the shape of the pseudoligand. We report the detailed computational protocol and its computational validation using known biologically active compounds extracted from the WOMBAT database. Models derived for five selected targets were used to perform the virtual screening experiments to obtain the enrichment data for various virtual screening methods. It was found that our approach afforded similar or better enrichment ratios than other related methods, often with better diversity among the top ranking computational hits.  相似文献   

10.
Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.  相似文献   

11.
Annotation efforts in biosciences have focused in past years mainly on the annotation of genomic sequences. Only very limited effort has been put into annotation schemes for pharmaceutical ligands. Here we propose annotation schemes for the ligands of four major target classes, enzymes, G protein-coupled receptors (GPCRs), nuclear receptors (NRs), and ligand-gated ion channels (LGICs), and outline their usage for in silico screening and combinatorial library design. The proposed schemes cover ligand functionality and hierarchical levels of target classification. The classification schemes are based on those established by the EC, GPCRDB, NuclearDB, and LGICDB. The ligands of the MDL Drug Data Report (MDDR) database serve as a reference data set of known pharmacologically active compounds. All ligands were annotated according to the schemes when attribution was possible based on the activity classification provided by the reference database. The purpose of the ligand-target classification schemes is to allow annotation-based searching of the ligand database. In addition, the biological sequence information of the target is directly linkable to the ligand, hereby allowing sequence similarity-based identification of ligands of next homologous receptors. Ligands of specified levels can easily be retrieved to serve as comprehensive reference sets for cheminformatics-based similarity searches and for design of target class focused compound libraries. Retrospective in silico screening experiments within the MDDR01.1 database, searching for structures binding to dopamine D2, all dopamine receptors and all amine-binding class A GPCRs using known dopamine D2 binding compounds as a reference set, have shown that such reference sets are in particular useful for the identification of ligands binding to receptors closely related to the reference system. The potential for ligand identification drops with increasing phylogenetic distance. The analysis of the focus of a tertiary amine based combinatorial library compared to known amine binding class A GPCRs, peptide binding class A GPCRs, and LGIC ligands constitutes a second application scenario which illustrates how the focus of a combinatorial library can be treated quantitatively. The provided annotation schemes, which bridge chem- and bioinformatics by linking ligands to sequences, are expected to be of key utility for further systematic chemogenomics exploration of previously well explored target families.  相似文献   

12.
HIV infection is initiated by fusion of the virus with the target cell through binding of the viral gp120 protein with the CD4 cell surface receptor protein and the CXCR4 or CCR5 co-receptors. There is currently considerable interest in developing novel ligands that can modulate the conformations of these co-receptors and, hence, ultimately block virus-cell fusion. This article describes a detailed comparison of the performance of receptor-based and ligand-based virtual screening approaches to find CXCR4 and CCR5 antagonists that could potentially serve as HIV entry inhibitors. Because no crystal structures for these proteins are available, homology models of CXCR4 and CCR5 have been built, using bovine rhodopsin as the template. For ligand-based virtual screening, several shape-based and property-based molecular comparison approaches have been compared, using high-affinity ligands as query molecules. These methods were compared by virtually screening a library assembled by us, consisting of 602 known CXCR4 and CCR5 inhibitors and some 4700 similar presumed inactive molecules. For each receptor, the library was queried using known binders, and the enrichment factors and diversity of the resulting virtual hit lists were analyzed. Overall, ligand-based shape-matching searches yielded higher enrichments than receptor-based docking, especially for CXCR4. The results obtained for CCR5 suggest the possibility that different active scaffolds bind in different ways within the CCR5 pocket.  相似文献   

13.
Since the evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, scoring functions play significant roles in it. However, it is known that a scoring function does not always work well for all target proteins. When one cannot know which scoring function works best against a target protein a priori, there is no standard scoring method to know it even if 3D structure of a target protein-ligand complex is available. Therefore, development of the method to achieve high enrichments from given scoring functions and 3D structure of protein-ligand complex is a crucial and challenging task. To address this problem, we applied SCS (supervised consensus scoring), which employs a rough linear correlation between the binding free energy and the root-mean-square deviation (rmsd) of a native ligand conformations and incorporates protein-ligand binding process with docked ligand conformations using supervised learning, to virtual screening. We evaluated both the docking poses and enrichments of SCS and five scoring functions (F-Score, G-Score, D-Score, ChemScore, and PMF) for three different target proteins: thymidine kinase (TK), thrombin (thrombin), and peroxisome proliferator-activated receptor gamma (PPARgamma). Our enrichment studies show that SCS is competitive or superior to a best single scoring function at the top ranks of screened database. We found that the enrichments of SCS could be limited by a best scoring function, because SCS is obtained on the basis of the five individual scoring functions. Therefore, it is concluded that SCS works very successfully from our results. Moreover, from docking pose analysis, we revealed the connection between enrichment and average centroid distance of top-scored docking poses. Since SCS requires only one 3D structure of protein-ligand complex, SCS will be useful for identifying new ligands.  相似文献   

14.
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.  相似文献   

15.
As an extension to a previous published study (McGaughey et al., J Chem Inf Model 47:1504–1519, 2007) comparing 2D and 3D similarity methods to docking, we apply a subset of those virtual screening methods (TOPOSIM, SQW, ROCS-color, and Glide) to a set of protein/ligand pairs where the protein is the target for docking and the cocrystallized ligand is the target for the similarity methods. Each protein is represented by a maximum of five crystal structures. We search a diverse subset of the MDDR as well as a diverse small subset of the MCIDB, Merck’s proprietary database. It is seen that the relative effectiveness of virtual screening methods, as measured by the enrichment factor, is highly dependent on the particular crystal structure or ligand, and on the database being searched. 2D similarity methods appear very good for the MDDR, but poor for the MCIDB. However, ROCS-color (a 3D similarity method) does well for both databases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In this study we evaluate how far the scope of similarity searching can be extended to identify not only ligands binding to the same target as the reference ligand(s) but also ligands of other homologous targets without initially known ligands. This "homology-based similarity searching" requires molecular representations reflecting the ability of a molecule to interact with target proteins. The Similog keys, which are introduced here as a new molecular representation, were designed to fulfill such requirements. They are based only on the molecular constitution and are counts of atom triplets. Each triplet is characterized by the graph distances and the types of its atoms. The atom-typing scheme classifies each atom by its function as H-bond donor or acceptor and by its electronegativity and bulkiness. In this study the Similog keys are investigated in retrospective in silico screening experiments and compared with other conformation independent molecular representations. Studied were molecules of the MDDR database for which the activity data was augmented by standardized target classification information from public protein classification databases. The MDDR molecule set was split randomly into two halves. The first half formed the candidate set. Ligands of four targets (dopamine D2 receptor, opioid delta-receptor, factor Xa serine protease, and progesterone receptor) were taken from the second half to form the respective reference sets. Different similarity calculation methods are used to rank the molecules of the candidate set by their similarity to each of the four reference sets. The accumulated counts of molecules binding to the reference target and groups of targets with decreasing homology to it were examined as a function of the similarity rank for each reference set and similarity method. In summary, similarity searching based on Unity 2D-fingerprints or Similog keys are found to be equally effective in the identification of molecules binding to the same target as the reference set. However, the application of the Similog keys is more effective in comparison with the other investigated methods in the identification of ligands binding to any target belonging to the same family as the reference target. We attribute this superiority to the fact that the Similog keys provide a generalization of the chemical elements and that the keys are counted instead of merely noting their presence or absence in a binary form. The second most effective molecular representation are the occurrence counts of the public ISIS key fragments, which like the Similog method, incorporates key counting as well as a generalization of the chemical elements. The results obtained suggest that ligands for a new target can be identified by the following three-step procedure: 1. Select at least one target with known ligands which is homologous to the new target. 2. Combine the known ligands of the selected target(s) to a reference set. 3. Search candidate ligands for the new targets by their similarity to the reference set using the Similog method. This clearly enlarges the scope of similarity searching from the classical application for a single target to the identification of candidate ligands for whole target families and is expected to be of key utility for further systematic chemogenomics exploration of previously well explored target families.  相似文献   

17.
Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target rate depends on specificity and promiscuity in protein-ligand interactions and, to a considerable extent, on the effectiveness of the scoring function, which still is the Achilles' heel of molecular docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleoside, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets, including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering out most false positive entries. The current survey suggests that selecting a small number of targets (<20) for experimental evaluation is achievable with a pure structure-based approach.  相似文献   

18.
Here, we propose an in silico fragment-mapping method as a potential tool for fragment-based/structure-based drug discovery (FBDD/SBDD). For this method, we created a database named Canonical Subsite–Fragment DataBase (CSFDB) and developed a knowledge-based fragment-mapping program, Fsubsite. CSFDB consists of various pairs of subsite–fragments derived from X-ray crystal structures of known protein–ligand complexes. Using three-dimensional similarity-matching between subsites on one protein and another, Fsubsite compares the surface of a target protein with all subsites in CSFDB. When a local topography similar to the subsite is found on the surface, Fsubsite places a fragment combined with the subsite in CSFDB on the target protein. For validation purposes, we applied the method to the apo-structure of cyclin-dependent kinase 2 (CDK2) and identified four compounds containing three mapped fragments that existed in the list of known inhibitors of CDK2. Next, the utility of our fragment-mapping method for fragment-growing was examined on the complex structure of tRNA-guanine transglycosylase with a small ligand. Fsubsite mapped appropriate fragments on the same position as the binding ligand or in the vicinity of the ligand. Finally, a 3D-pharmacophore model was constructed from the fragments mapped on the apo-structure of heat shock protein 90-α (HSP90α). Then, 3D pharmacophore-based virtual screening was carried out using a commercially available compound database. The resultant hit compounds were very similar to a known ligand of HSP90α. As a result of these findings, this in silico fragment-mapping method seems to be a useful tool for computational FBDD and SBDD.  相似文献   

19.
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein–ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.  相似文献   

20.
To help improve the accuracy of protein-ligand docking as a useful tool for drug discovery, we developed MPSim-Dock, which ensures a comprehensive sampling of diverse families of ligand conformations in the binding region followed by an enrichment of the good energy scoring families so that the energy scores of the sampled conformations can be reliably used to select the best conformation of the ligand. This combines elements of DOCK4.0 with molecular dynamics (MD) methods available in the software, MPSim. We test here the efficacy of MPSim-Dock to predict the 64 protein-ligand combinations formed by starting with eight trypsin cocrystals, and crossdocking the other seven ligands to each protein conformation. We consider this as a model for how well the method would work for one given target protein structure. Using as a criterion that the structures within 2 kcal/mol of the top scoring include a conformation within a coordinate root mean square (CRMS) of 1 A of the crystal structure, we find that 100% of the 64 cases are predicted correctly. This indicates that MPSim-Dock can be used reliably to identify strongly binding ligands, making it useful for virtual ligand screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号