首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The system of equations (f (u))t − (a(u)v + b(u))x = 0 and ut − (c(u)v + d(u))x = 0, where the unknowns u and v are functions depending on , arises within the study of some physical model of the flow of miscible fluids in a porous medium. We give a definition for a weak entropy solution (u, v), inspired by the Liu condition for admissible shocks and by Krushkov entropy pairs. We then prove, in the case of a natural generalization of the Riemann problem, the existence of a weak entropy solution only depending on x/t. This property results from the proof of the existence, by passing to the limit on some approximations, of a function g such that u is the classical entropy solution of ut − ((cg + d)(u))x = 0 and simultaneously w = f (u) is the entropy solution of wt − ((ag + b)(f(−1)(w)))x = 0. We then take v = g(u), and the proof that (u, v) is a weak entropy solution of the coupled problem follows from a linear combination of the weak entropy inequalities satisfied by u and f (u). We then show the existence of an entropy weak solution for a general class of data, thanks to the convergence proof of a coupled finite volume scheme. The principle of this scheme is to compute the Godunov numerical flux with some interface functions ensuring the symmetry of the finite volume scheme with respect to both conservation equations.  相似文献   

2.
《偏微分方程通讯》2013,38(11-12):1947-1973
We prove uniqueness of the term c(u,p) of partial differential equations ?Δu + c(u, ?u) = 0 and ? t u ? Δu + c(u, ?u) = 0 with the Dirichlet-to-Neumann map given on a part of the lateral boundary. We use a linearization method and singular solutions in the boundary reconstruction of the linearized equations  相似文献   

3.
In this paper we consider the Gross-Pitaevskii equation iu t = Δu + u(1 − |u|2), where u is a complex-valued function defined on \Bbb RN×\Bbb R{\Bbb R}^N\times{\Bbb R} , N ≥ 2, and in particular the travelling waves, i.e., the solutions of the form u(x, t) = ν(x 1ct, x 2, …, x N ), where c ? \Bbb Rc\in{\Bbb R} is the speed. We prove for c fixed the existence of a lower bound on the energy of any non-constant travelling wave. This bound provides a non-existence result for non-constant travelling waves of fixed speed having small energy.  相似文献   

4.
A second order explicit method is developed for the numerical solution of the initialvalue problem w′(t) ≡ dw(t)/dt = ?(w), t > 0, w(0) = W0, in which the function ?(w) = αw(1 ? w) (w ? a), with α and a real parameters, is the reaction term in a mathematical model of the conduction of electrical impulses along a nerve axon. The method is based on four first-order methods that appeared in an earlier paper by Twizell, Wang, and Price [Proc. R. Soc. (London) A 430 , 541–576 (1990)]. In addition to being chaos free and of higher order, the method is seen to converge to one of the correct steady-state solutions at w = 0 or w = 1 for any positive value of α. Convergence is monotonic or oscillatory depending on W0, α, a, and l, the parameter in the discretization of the independent variable t. The approach adopted is extended to obtain a numerical method that is second order in both space and time for solving the initial-value boundary-value problem ?u/?t = κ?2u/?x2 + αu(1 ? u)(u ? a) in which u = u(x,t). The numerical method so developed obtained the solution by solving a single linear algebraic system at each time step. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
《偏微分方程通讯》2013,38(7-8):1385-1408
The purpose of this paper is to study the limit in L 1(Ω), as t → ∞, of solutions of initial-boundary-value problems of the form ut ? Δw = 0 and u ∈ β(w) in a bounded domain Ω with general boundary conditions ?w/?η + γ(w) ? 0. We prove that a solution stabilizes by converging as t → ∞ to a solution of the associated stationary problem. On the other hand, since in general these solutions are not unique, we characterize the true value of the limit and comment the results on the related concrete situations like the Stefan problem and the filtration equation.  相似文献   

6.
In this paper, the existence of travelling front solution for a class of competition-diffusion system with high-order singular point
(I)
is studied, where d i,ai>0 (i=1,2) and w=(w 1(x,t),w 2(x,t)). Under the certain assumptions on f, it is showed that if a i<1 for some i, then (1) has no travelling front solution, if a i≥1 for i=1,2, then there is a c 0,c*>0, where c* is called the minimal wave speed of (I), such that if cc 0 or c=c*, then (I) has a travelling front solution, if c<c*, then (I) has no travelling front solution by using the shooting method in combination with a compactness argument. Project supported by both the National (49772161) and Henan Province (984050300) Natural Science Foundations of China.  相似文献   

7.
We present an algorithm for approximating the solution of the degenerate diffusion problem ut = (?(u))xx in (0,1) × R+ (with zero Dirichlet boundary conditions, and nonnegative initial datum u0), where ?(u) = min {ku1} for some ? > 0. The algorithm also provides an approximation for the interface curves which represent the boundary of the Mushy Region ?? = {(x, t): ? (u(x, t)) = 1}. The convergence of the algorithm is proved.  相似文献   

8.
In this paper we consider the Cauchy problem for the equation ∂u/∂t + uu/∂x + u/x = 0 for x > 0, t ⩾ 0, with u(x, 0) = u0(x) for x < x0, u(x, 0) = u0+(x) for x > x0, u0(x0) > u0+(x0). Following the ideas of Majda, 1984 and Lax, 1973, we construct, for smooth u0 and u0+, a global shock front weak solution u(x, t) = u(x, t) for x < ϕ(t), u(x, t) = u+(x, t) for x > ϕ(t), where u and u+ are the strong solutions corresponding (respectively) to u0 and u0+ and the curve t → ϕ(t) is defined by dϕ/dt (t) = 1/2[u(ϕ(t), t) + u+(ϕ(t), t)], t ⩾ 0 and ϕ(0) = x0. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

9.
We consider the following one‐phase free boundary problem: Find (u, Ω) such that Ω = {u > 0} and with QT = ?n × (0, T). Under the condition that Ωo is convex and log uo is concave, we show that the convexity of Ω(t) and the concavity of log u(·, t) are preserved under the flow for 0 ≤ tT as long as ?Ω(t) and u on Ω(t) are smooth. As a consequence, we show the existence of a smooth‐up‐to‐the‐interface solution, on 0 < t < Tc, with Tc denoting the extinction time of Ω(t). We also provide a new proof of a short‐time existence with C2,α initial data on the general domain. © 2002 John Wiley & Sons, Inc.  相似文献   

10.
We study some boundedness properties of radial solutions to the Cauchy problem associated to the wave equation (∂ t 2-▵ x )u(t,x)=0 and meanwhile we give a new proof of the solution formula. Received: July 7, 1998?Published online: March 19, 2002  相似文献   

11.
12.
We study Lp decay estimates of the solution to the Cauchy problem for the dissipative wave equation in even dimensions: (□+?t)u=0 in ?N × (0,∞) for even N=2n?2 with initial data (u,?tu)∣t=0 =(u0,u1). The representation formulas of the solution u(t)=?tS(t)u0 + S(t)(u0+u1) provide the sharp estimates on Lp norms with p?1. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
We consider the Fisher–KPP equation with advection: ut=uxx?βux+f(u) on the half‐line x∈(0,), with no‐flux boundary condition ux?βu = 0 at x = 0. We study the influence of the advection coefficient ?β on the long time behavior of the solutions. We show that for any compactly supported, nonnegative initial data, (i) when β∈(0,c0), the solution converges locally uniformly to a strictly increasing positive stationary solution, (ii) when β∈[c0,), the solution converges locally uniformly to 0, here c0 is the minimal speed of the traveling waves of the classical Fisher–KPP equation. Moreover, (i) when β > 0, the asymptotic positions of the level sets on the right side of the solution are (β + c0)t + o(t), and (ii) when βc0, the asymptotic positions of the level sets on the left side are (β ? c0)t + o(t). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Consider the Cauchy problem in odd dimensions for the dissipative wave equation: (□+∂t)u=0 in with (u,∂tu)|t=0=(u0,u1). Because the L2 estimates and the L estimates of the solution u(t) are well known, in this paper we pay attention to the Lp estimates with 1p<2 (in particular, p=1) of the solution u(t) for t0. In order to derive Lp estimates we first give the representation formulas of the solution u(t)=∂tS(t)u0+S(t)(u0+u1) and then we directly estimate the exact solution S(t)g and its derivative ∂tS(t)g of the dissipative wave equation with the initial data (u0,u1)=(0,g). In particular, when p=1 and n1, we get the L1 estimate: u(t)L1Cet/4(u0Wn,1+u1Wn−1,1)+C(u0L1+u1L1) for t0.  相似文献   

15.
In this paper, the boundedness of all solutions of the nonlinear differential equation (φp(x′))′ + αφp(x+) – βφp(x) + f(x) = e(t) is studied, where φp(u) = |u|p–2 u, p ≥ 2, α, β are positive constants such that = 2w–1 with w ∈ ?+\?, f is a bounded C5 function, e(t) ∈ C6 is 2πp‐periodic, x+ = max{x, 0}, x = max{–x, 0}. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This paper is concerned with the study of the large-time behavior of the solutions u of a class of one-dimensional reaction–diffusion equations with monostable reaction terms f, including in particular the classical Fisher-KPP nonlinearities. The nonnegative initial data u 0(x) are chiefly assumed to be exponentially bounded as x tends to + ∞ and separated away from the unstable steady state 0 as x tends to ? ∞. On the one hand, we give some conditions on u 0 which guarantee that, for some λ > 0, the quantity c λ = λ +f′(0)/λ is the asymptotic spreading speed, in the sense that lim  t→+∞ u(t, ct) = 1 (the stable steady state) if c < c λ and lim  t→+∞ u(t, ct) = 0 if c > c λ. These conditions are fulfilled in particular when u 0(xe λx is asymptotically periodic as x → + ∞. On the other hand, we also construct examples where the spreading speed is not uniquely determined. Namely, we show the existence of classes of initial conditions u 0 for which the ω-limit set of u(t, ct + x) as t tends to + ∞ is equal to the whole interval [0, 1] for all x ∈ ? and for all speeds c belonging to a given interval (γ1, γ2) with large enough γ1 < γ2 ≤ + ∞.  相似文献   

17.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

18.
In this paper we consider the Gross-Pitaevskii equation iu t = Δu + u(1 − |u|2), where u is a complex-valued function defined on , N ≥ 2, and in particular the travelling waves, i.e., the solutions of the form u(x, t) = ν(x 1ct, x 2, …, x N ), where is the speed. We prove for c fixed the existence of a lower bound on the energy of any non-constant travelling wave. This bound provides a non-existence result for non-constant travelling waves of fixed speed having small energy.  相似文献   

19.
This paper studies the stability of the rarefaction wave for Navier–Stokes equations in the half‐line without any smallness condition. When the boundary value is given for velocity ux = 0 = u? and the initial data have the state (v+, u+) at x→ + ∞, if u?<u+, it is excepted that there exists a solution of Navier–Stokes equations in the half‐line, which behaves as a 2‐rarefaction wave as t→ + ∞. Matsumura–Nishihara have proved it for barotropic viscous flow (Quart. Appl. Math. 2000; 58:69–83). Here, we generalize it to the isentropic flow with more general pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We estimate the blow‐up time for the reaction diffusion equation utu+ λf(u), for the radial symmetric case, where f is a positive, increasing and convex function growing fast enough at infinity. Here λ>λ*, where λ* is the ‘extremal’ (critical) value for λ, such that there exists an ‘extremal’ weak but not a classical steady‐state solution at λ=λ* with ∥w(?, λ)∥→∞ as 0<λ→λ*?. Estimates of the blow‐up time are obtained by using comparison methods. Also an asymptotic analysis is applied when f(s)=es, for λ?λ*?1, regarding the form of the solution during blow‐up and an asymptotic estimate of blow‐up time is obtained. Finally, some numerical results are also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号