首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this note we present an approach based on formulation space search to solve mixed-integer nonlinear (zero-one) programming problems. Our approach is an iterative one which adds a single nonlinear inequality constraint of increasing tightness to the original problem. Computational results are presented for our approach on 51 standard benchmark problems taken from MINLPLib. We compare our approach against the Minotaur and minlp_bb nonlinear solvers, as well as against the RECIPE algorithms.  相似文献   

2.
This research focuses on the development of an approach for solving multi-degree-of-freedom (MDOF) nonlinear oscillation problems with linear coupling. The original physical information included in the governing equations is mostly transferred into semi-analytical and numerical solutions. The semi-analytical solutions generated by the present approach are continuous everywhere and reflect more accurately the characteristics of the motion of the nonlinear dynamic systems. General procedures for three types of nonlinear oscillation problems are formulated in detail for allocation in nonlinear dynamic analysis. Two nonlinear oscillation systems with quadratic and cubic nonlinearities are solved to demonstrate the applications of the present approach.  相似文献   

3.
In this paper,we consider nonlinear infinity-norm minimization problems.We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed linear and nonlinear infinity- norm minimization problems.Numerical results are presented.  相似文献   

4.
Successive linear programming (SLP) algorithms solve nonlinear optimization problems via a sequence of linear programs. We present an approach for a special class of nonlinear programming problems, which arise in multiperiod coal blending. The class of nonlinear programming problems and the solution approach considered in this paper are quite different from previous work. The algorithm is very simple, easy to apply and can be applied to as large a problem as the linear programming code can handle. The quality of solution, produced by the proposed algorithm, is discussed and the results of some test problems, in the real world environment, are provided.  相似文献   

5.
Based on the homotopy analysis method (HAM), a general analytical approach for obtaining approximate series solutions to nonlinear two-point boundary value problems in finite domains is proposed. To demonstrate its effectiveness, this approach is applied to solve three nonlinear problems, and the analytical solutions obtained are more accurate than the numerical solutions obtained via the shooting method and the sinc-Galerkin method.  相似文献   

6.
This paper is devoted to image denoising problems using multiresolution schemes related to variational problems. We start with the linear approach of Donoho and Johnstone, that is related to a well known diffusion‐type variational problem. In order to improve the behavior of this approach, we propose some new nonlinear variational problems more adapted to the problem of denoising. Moreover, the discretization is performed using nonlinear multiresolution schemes. In particular, we obtain some fast and well adapted schemes for the considered problem of denoising.  相似文献   

7.
In this work we demonstrate how the extension of the Evans function method using the compound matrix approach can be implemented to undertake the stability analysis (normally done through numerical means) of nonlinear travelling waves. The main advantage of this approach is that it can easily overcome the stiffness which is normally associated with these kinds of problems. We present a general approach which allows this method to be used for a general class of nonlinear travelling wave problems.  相似文献   

8.
We introduce the concept of partially strictly monotone functions and apply it to construct a class of nonlinear penalty functions for a constrained optimization problem. This class of nonlinear penalty functions includes some (nonlinear) penalty functions currently used in the literature as special cases. Assuming that the perturbation function is lower semi-continuous, we prove that the sequence of optimal values of nonlinear penalty problems converges to that of the original constrained optimization problem. First-order and second-order necessary optimality conditions of nonlinear penalty problems are derived by converting the optimality of penalty problems into that of a smooth constrained vector optimization problem. This approach allows for a concise derivation of optimality conditions of nonlinear penalty problems. Finally, we prove that each limit point of the second-order stationary points of the nonlinear penalty problems is a second-order stationary point of the original constrained optimization problem.  相似文献   

9.
Model predictive control requires the solution of a sequence of continuous optimization problems that are nonlinear if a nonlinear model is used for the plant. We describe briefly a trust-region feasibility-perturbed sequential quadratic programming algorithm (developed in a companion report), then discuss its adaptation to the problems arising in nonlinear model predictive control. Computational experience with several representative sample problems is described, demonstrating the effectiveness of the proposed approach.  相似文献   

10.
This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems.In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based on branch-and-bound, but does not require the NLP problem at each node to be solved to optimality. Instead, branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem is solved whilst searching the tree. The nonlinear solver that is considered in this paper is a Sequential Quadratic Programming solver.A numerical comparison of the new method with nonlinear branch-and-bound is presented and a factor of up to 3 improvement over branch-and-bound is observed.  相似文献   

11.
One of the most effective numerical techniques for solving nonlinear programming problems is the sequential quadratic programming approach. Many large nonlinear programming problems arise naturally in data fitting and when discretization techniques are applied to systems described by ordinary or partial differential equations. Problems of this type are characterized by matrices which are large and sparse. This paper describes a nonlinear programming algorithm which exploits the matrix sparsity produced by these applications. Numerical experience is reported for a collection of trajectory optimization problems with nonlinear equality and inequality constraints.The authors wish to acknowledge the insightful contributions of Dr. William Huffman.  相似文献   

12.
In problems of optimal sequential estimation, in the study of fluid and electrolyte systems, in nonlinear mechanics, and throughout applied mathematics we are confronted with solving nonlinear two-point boundary-value problems. A new approach is provided which seems especially useful when solutions are desired for a variety of interval lengths.  相似文献   

13.
A general approach for using a stiff ordinary differential equation solver to integrate a system of time-dependent partial differential equations in one spacial dimension is described. A computer program based upon the algorithm was written and used to solve nonlinear problems in shock hydrodynamics and hydrology as well as a nonlinear system of ordinary differential equations. The approach is global-implicit and provides an option to the development of specialized computer programs for specific problems of interest. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
This paper describes recent experience in tackling large nonlinear integer programming problems using the MINOS large-scale optimization software. A technique is presented for extending the constrained search approach used in MINOS to exploring integer-feasible solutions once a continuous optimal solution is obtained. Computational experience with this approach is described for two classes of problems: quadratic assignment problems and pipeline network design problems.  相似文献   

15.
In this article we look at a new algorithm for solving convex mixed integer nonlinear programming problems. The algorithm uses an integrated approach, where a branch and bound strategy is mixed with solving nonlinear programming problems at each node of the tree. The nonlinear programming problems, at each node, are not solved to optimality, rather one iteration step is taken at each node and then branching is applied. A Sequential Cutting Plane (SCP) algorithm is used for solving the nonlinear programming problems by solving a sequence of linear programming problems. The proposed algorithm generates explicit lower bounds for the nodes in the branch and bound tree, which is a significant improvement over previous algorithms based on QP techniques. Initial numerical results indicate that the described algorithm is a competitive alternative to other existing algorithms for these types of problems.  相似文献   

16.
Goal programming is a technique often used in engineering design activities primarily to find a compromised solution which will simultaneously satisfy a number of design goals. In solving goal programming problems, classical methods reduce the multiple goal-attainment problem into a single objective of minimizing a weighted sum of deviations from goals. This procedure has a number of known difficulties. First, the obtained solution to the goal programming problem is sensitive to the chosen weight vector. Second, the conversion to a single-objective optimization problem involves additional constraints. Third, since most real-world goal programming problems involve nonlinear criterion functions, the resulting single-objective optimization problem becomes a nonlinear programming problem, which is difficult to solve using classical optimization methods. In tackling nonlinear goal programming problems, although successive linearization techniques have been suggested, they are found to be sensitive to the chosen starting solution. In this paper, we pose the goal programming problem as a multi-objective optimization problem of minimizing deviations from individual goals and then suggest an evolutionary optimization algorithm to find multiple Pareto-optimal solutions of the resulting multi-objective optimization problem. The proposed approach alleviates all the above difficulties. It does not need any weight vector. It eliminates the need of having extra constraints needed with the classical formulations. The proposed approach is also suitable for solving goal programming problems having nonlinear criterion functions and having a non-convex trade-off region. The efficacy of the proposed approach is demonstrated by solving a number of nonlinear goal programming test problems and an engineering design problem. In all problems, multiple solutions (each corresponding to a different weight vector) to the goal programming problem are found in one single simulation run. The results suggest that the proposed approach is an effective and practical tool for solving real-world goal programming problems.  相似文献   

17.
This paper is concerned with the Weighted Energy-Dissipation (WED) functional approach to doubly nonlinear evolutionary problems. This approach consists in minimizing (WED) functionals defined over entire trajectories. We present the features of the WED variational formalism and analyze the related Euler-Lagrange problems. Moreover, we check that minimizers of the WED functionals converge to the corresponding limiting doubly nonlinear evolution. Finally, we present a discussion on the functional convergence of sequences of WED functionals and present some application of the abstract theory to nonlinear PDEs.  相似文献   

18.
This paper describes recent experience in tackling large nonlinear integer programming problems using the MINOS large-scale optimization software. A technique is presented for extending the constrained search approach used in MINOS to exploring integer-feasible solutions once a continuous optimal solution is obtained. Computational experience with this approach is described for two classes of problems: quadratic assignment problems and pipeline network design problems.  相似文献   

19.
In this paper, we consider approximating global minima of zero or small residual, nonlinear least-squares problems. We propose a selective search approach based on the concept of selective minimization recently introduced in Zhang et al. (Technical Report TR99-12, Rice University, Department of Computational and Applied Mathematics MS-134, Houston, TX 77005, 1999). To test the viability of the proposed approach, we construct a simple implementation using a Levenberg-Marquardt type method combined with a multi-start scheme, and compare it with several existing global optimization techniques. Numerical experiments were performed on zero residual nonlinear least-squares problems chosen from structural biology applications and from the literature. On the problems of significant sizes, the performance of the new approach compared favorably with other tested methods, indicating that the new approach is promising for the intended class of problems.  相似文献   

20.
Jörg Lampe  Heinrich Voss 《PAMM》2008,8(1):10819-10820
A computational approach for solving regularized total least squares problems via a sequence of eigenvalue problems has recently been introduced by Renaut and Guo. Combining this approach with thick starts using the nonlinear Arnoldi method lead to a very efficient method for large RTLS problems. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号