首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The present paper is concerned with finding an effective polynomial solution to a class of dual integral equations which arise in many mixed boundary value problems in the theory of elasticity. The dual integral equations are first transformed into a Fredholm integration equation of the second kind via an auxiliary function, which is next reduced to an infinite system of linear algebraic equations by representing the unknown auxiliary function in the form of an infinite series of Jacobi polynomials. The approximate solution of this infinite system of equations can be obtained by a suitable truncation. It is shown that the unknown function involving the dual integral equations can also be expressed in the form of an infinite series of Jacobi polynomials with the same expansion coefficients with no numerical integration involved. The main advantage of the present approach is that the solution of the dual integral equations thus obtained is numerically more stable than that obtained by reducing themdirectly into an infinite system of equations, insofar as the expansion coefficients are determined essentially by solving asecond kind integral equation.  相似文献   

2.
Using a standard application of Green's theorem, the exterior Dirichlet problem for the Laplace equation in three dimensions is reduced to a pair of integral equations. One integral equation is of the second kind and the other is of the first kind. It is known that the integral equation of the second kind is not uniquely solvable, however, it has been demonstrated that the pair of integral equations has a unique solution. The present approach is based on the observation that the known function appearing in the integral equation of the second kind lies in a certain Banach space E which is a proper subspace of the Banach space of continuous complex-valued functions equipped with the maximum norm. Furthermore, it can be shown that the related integral operator when restricted to E has spectral radius less than unity. Consequently, a particular solution to the integral equation of the second kind can be obtained by the method of successive approximations and the unique solution to the problem is then obtained by using the integral equation of the first kind. Comparisons are made between the present algorithm and other known constructive methods. Finally, an example is supplied to illustrate the method of this paper.  相似文献   

3.
研究带非局部积分项的二阶线性常微分方程及其在金融保险上的应用.首先讨论带非局部积分项的二阶常微分方程解的存在唯一性,通过变量代换和累次积分交换积分顺序将非局部项简化,将方程化为方程组,然后完成了对方程组解的存在唯一性的证明.接着分析了带非局部项的二阶常微分方程解的结构,给出了方程解的形式.最后通过推导,指出带非局部项的线性常微分方程在保险公司的破产概率研究中的应用,重点放在二阶方程的应用上,并且在某一特定情况下,举出了一个可以给出解析解的例子.  相似文献   

4.
In some earlier publications it has been shown that the solutions of the boundary integral equations for some mixed boundary value problems for the Helmholtz equation permit integral representations in terms of solutions of associated complicated singular algebraic ordinary differential equations. The solutions of these differential equations, however, are required to be known on some infinite interval on the real line, which is unsatisfactory from a practical point of view. In this paper, for the example of one specific boundary integral equation, the relevant solutions of the associated differential equation are expressed by integrals which contain only one unknown generalized function, the support of this generalized function is no longer unbounded but a compact subset of the real line. This generalized function is a distributional solution of the homogeneous boundary integral equation. By this null space distribution the boundary integral equation can be solved for arbitrary right-hand sides, this solution method can be considered of being analogous to the method of variation of parameters in the theory of ordinary differential equations. The nature of the singularities of the null space distribution is worked out and it is shown that the null space distribution itself can be expressed by solutions of the associated ordinary differential equation.  相似文献   

5.
A Cauchy type singular integral equation can be numerically solved by the use of an appropriate numerical integration rule and the reduction of this equation to a system of linear algebraic equations, either directly or after the reduction of the Cauchy type singular integral equation to an equivalent Fredholm integral equation of the second kind. In this paper two fundamental theorems on the equivalence (under appropriate conditions) of the aforementioned methods of numerical solution of Cauchy type singular integral equations are proved in sufficiently general cases of Cauchy type singular integral equations of the second kind.  相似文献   

6.
We study the heat, linear Schrödinger (LS), and linear KdV equations in the domain l(t) < x < ∞ , 0 < t < T , with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.  相似文献   

7.
二阶线性常微分方程的两点边值问题的泰勒展开式解法   总被引:2,自引:0,他引:2  
本文用泰勒展开公式求解二阶线性常微分方程的两点边值问题.首先将两点边值问题化为一个F redho lm积分方程,进一步通过泰勒展开公式化F redho lm积分方程为线性方程组,利用G ramm er法则可求得问题的近似解.  相似文献   

8.
提出一种新的数值方法——准格林函数方法.以Pasternak地基上简支多边形薄板的振动问题为例,详细阐明了准格林函数方法的思想.即利用问题的基本解和边界方程构造一个准格林函数,这个函数满足了问题的齐次边界条件,采用格林公式将Pasternak地基上薄板自由振动问题的振型控制微分方程化为两个耦合的第二类Fredholm积分方程.边界方程有多种选择,在选定一种边界方程的基础上,可以通过建立一个新的边界方程来表示问题的边界,以克服积分核的奇异性,最后由积分方程的离散化方程组有非平凡解的条件,求得固有频率.数值方法表明,该方法具有较高的精度.  相似文献   

9.
An electromagnetic diffraction problem in a wedge shaped region is reduced to a system of coupled functional difference equations by means of Sommerfeld integrals and Malyuzhinets theorem. By introducing an integral operator it is shown that the solutions of this system of functional equations can be defined in terms of integral representations whose kernels are solutions of a singular integral equation of Cauchy-Carleman type for which an explicit solution is given.  相似文献   

10.
Summary. The phenomenon of stimulated Raman scattering (SRS) can be described by three coupled PDEs which define the pump electric field, the Stokes electric field, and the material excitation as functions of distance and time. In the transient limit these equations are integrable, i.e., they admit a Lax pair formulation. Here we study this transient limit. The relevant physical problem can be formulated as an initial-boundary value (IBV) problem where both independent variables are on a finite domain. A general method for solving IBV problems for integrable equations has been introduced recently. Using this method we show that the solution of the equations describing the transient SRS can be obtained by solving a certain linear integral equation. It is interesting that this equation is identical to the linear integral equation characterizing the solution of an IBV problem of the sine-Gordon equation in light-cone coordinates. This integral equation can be solved uniquely in terms of the values of the pump and Stokes fields at the entry of the Raman cell. The asymptotic analysis of this solution reveals that the long-distance behavior of the system is dominated by the underlying self-similar solution which satisfies a particular case of the third Painlevé transcendent. This result is consistent with both numerical simulations and experimental observations. We also discuss briefly the effect of frequency mismatch between the pump and the Stokes electric fields. Received December 10, 1996; second revision received October 10, 1997; final revision received January 20, 1998  相似文献   

11.
It is observed that the one-dimensional heat equation with certain nonlinear boundary conditions can be reformulated as a system of coupled Volterra integral equations. A product trapezoidal scheme is proposed for the numerical solution of this integral equation system, and some numerical experiments are given to compare the performances of this integral equation approach and the Crank-Nicholson method applied to the original initial-boundary value problem. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
In this paper we consider a particular class of two-dimensional singular Volterra integral equations. Firstly we show that these integral equations can indeed arise in practice by considering a diffusion problem with an output flux which is nonlocal in time; this problem is shown to admit an analytic solution in the form of an integral. More crucially, the problem can be re-characterized as an integral equation of this particular class. This example then provides motivation for a more general study: an analytic solution is obtained for the case when the kernel and the forcing function are both unity. This analytic solution, in the form of a series solution, is a variant of the Mittag-Leffler function. As a consequence it is an entire function. A Gronwall lemma is obtained. This then permits a general existence and uniqueness theorem to be proved.  相似文献   

13.
A note on certain integral inequalities with delay   总被引:2,自引:0,他引:2  
In this paper we establish some new integral inequalities with delay, which can be used as tools in the theory of some new classes of differential and integral equations. An application to obtain a bound on the solution of a certain integral equation is also given.  相似文献   

14.
The numerical solution of Volterra integral equations of the first kind can be accomplished if the integral is replaced by certain simple quadrature rules, such as the midpoint or the trapezoidal methods. When the kernel of the integral equation oscillates more rapidly than the solution one can use product integration techniques to increase the accuracy. Such an approach is investigated in this paper.  相似文献   

15.
A boundary integral method is developed for the mixed boundary value problem for the vector Helmholtz equation in R3. The obtained boundary integral equations for the unknown Cauchy data build a strong elliptic system of pseudodifferential equations which can therefore be used for numerical computations using Galerkin's procedure. We show existence, uniqueness and regularity of the solution of the integral equations. Especially we give the local "edge" behavior of the solution near the submanifold which divides the Dirichlet boundary from the Neumann boundary  相似文献   

16.
This article is concerned with the scattering of acoustic and electromagnetic time harmonic plane waves by an inhomogeneous medium. These problems can be translated into volume integral equations of the second kind – the most prominent example is the Lippmann–Schwinger integral equation. In this work, we study a particular class of scattering problems where the integral operator in the corresponding operator equation of Lippmann–Schwinger type fails to be compact. Such integral equations typically arise if the modelling of the inhomogeneous medium necessitates space-dependent coefficients in the highest order terms of the underlying partial differential equation. The two examples treated here are acoustic scattering from a medium with a space-dependent material density and electromagnetic medium scattering where both the electric permittivity and the magnetic permeability vary. In these cases, Riesz theory is not applicable for the solution of the arising integral equations of Lippmann–Schwinger type. Therefore, we show that positivity assumptions on the relative material parameters allow to prove positivity of the arising volume potentials in tailor-made weighted spaces of square integrable functions. This result merely holds for imaginary wavenumber and we exploit a compactness argument to conclude that the arising integral equations are of Fredholm type, even if the integral operators themselves are not compact. Finally, we explain how the solution of the integral equations in L 2 affects the notion of a solution of the scattering problem and illustrate why the order of convergence of a Galerkin scheme set up in L 2 does not suffer from our L 2 setting, compared to schemes in higher order Sobolev spaces.  相似文献   

17.
黄玉笙  林良裕 《数学学报》2004,47(4):703-710
利用积分变换技巧,作者给出了C~n中闭光滑可定向流形上一个新的Bochner-Martinelli型积分的高阶偏导数的奇异积分的Hadamard主值,获得了高阶奇异积分的Plemelj公式和合成公式,还讨论了相应的变系数线性微分积分方程的正则化,证明其可转化为一类等价的Fredholm方程。并且指出其特征方程当给出一组适当的边值条件时,在L~*中存在唯一解。  相似文献   

18.
The force-free Duffing–Van der Pol oscillator is considered. The truncated expansions for finding the solutions are used to look for exact solutions of this nonlinear ordinary differential equation. Conditions on parameter values of the equation are found to have the linearization of the Duffing–Van der Pol equation. The Painlevé test for this equation is used to study the integrability of the model. Exact solutions of this differential equation are found. In the special case the approach is simplified to demonstrate that some well-known methods can be used for finding exact solutions of nonlinear differential equations. The first integral of the Duffing–Van der Pol equation is found and the general solution of the equation is given in the special case for parameters of the equation. We also demonstrate the efficiency of the method for finding the first integral and the general solution for one of nonlinear second-order ordinary differential equations.  相似文献   

19.
This series of papers addresses three interrelated problems: the solution of a variational minimization problem, the solution of integral equations, and the solution of an initial-valued system of integro-differential equations. It will be shown that a large class of minimization problems requires the solution of linear Fredholm integral equations. It has also been shown that the solution of a linear Fredholm integral equation is identical to the solution of a Cauchy system. In this paper, we bypass the Fredholm integral equations and show that the minimization problem directly implies a solution of a Cauchy system. This first paper in the series looks only at quadratic functionals and scalar functions.This research was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR-77-3383.  相似文献   

20.
构造了一种正则化的积分方程方法来由Cauchy数据确定一维热传导方程的移动边界.在将区域延拓至规则区域后,通过Fourier方法将问题转化为一个第一类Volterra积分方程.然后分别用Lavrentiev正则化方法以及Tikhonov正则化方法将不稳定的第一类Volterra积分方程转化为适定的第二类积分方程,并分别将积分方程转化为常微分方程组,并用Runge—Kutta方法数值求解,以及直接离散来求解.最后通过自由边界上的条件得到数值的移动边界.通过一些数值试验表明此方法是有效可行的,并且给出的方法无需迭代,数值计算较简单.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号