首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
考虑到薄膜表面的热通量主要是来自辐射,因而采用一个依赖时间的拟二维拟线性扩散方程的Stefan问题(混合初边值问题)作为该问题的数学模型。用一种具有Crank-Nicholson格式的无条件稳定的有限差分析来求解抛物型偏微分方程的定解问题。用追赶法求解离散化的三对角方程组,然后用预估校正法求解拟线性扩散方程,从而避免了示解非线性差分方程组,琥珀亚硝酸酯在纵向自由薄膜凝固期内的温度分布数值计算结果和  相似文献   

2.
通过对铸件凝固过程中各换热边界条件的研究,建立了凝固过程的二维非稳态温度场计算数学模型;并运用了有限差分方法对模型进行离散,得到大型方程组,并利用超松驰迭代法(即SOR法)解该方程组,据此,利用Turbo C编制了计算机程序.上机运行结果表明,可较满意地模拟凝固过程温度场的分布.  相似文献   

3.
The following self-similar problem is considered. At the initial instant of time, a phase transformation front starts moving at constant velocity from a certain plane (which will be called a wall or a piston, depending on whether it is assumed to be fixed or movable); at this front, an elastic medium is formed as a result of solidification from a medium without tangential stresses. On the wall, boundary conditions are defined for the components of velocity, stress, or strain. Behind the solidification front, plane nonlinear elastic waves can propagate in the medium formed, provided that the velocities of these waves are less than the velocity of the front. The medium formed is assumed to be incompressible, weakly nonlinear, and with low anisotropy. Under these assumptions, the solution of the self-similar problem is described qualitatively for arbitrary parameters appearing in the statement of the problem. The study is based on the authors’ previous investigation of solidification fronts whose structure is described by the Kelvin–Voigt model of a viscoelastic medium.  相似文献   

4.
A computational study of the effect of stirrer position on fluid flow and solidification in a continuous casting billet mold with in-mold electromagnetic stirring has been carried out. The numerical investigation uses a full coupling method in which alternating magnetic field equations are solved simultaneously with the governing equations of fluid flow and heat transfer. An enthalpy-porosity technique is used for the solidification analysis while the magnetohydrodynamics technique is used for studying the fluid flow behavior under the electromagnetic field. The streamline, liquid fraction, and solid shell thickness at the mold wall have been predicted with and without EMS application at different positions along the length of the mold. Recirculation loops are seen to be formed above and below the stirrer position when fluid flow and electromagnetic field equations were solved, without incorporating the solidification model. Application of the solidification model interestingly resulted in the reduction of the size of the recirculation loops formed. The tangential component of velocity of the fluid near the solidification front, stirring intensity and the effective length of stirring below the stirrer decrease as the stirrer position is moved downwards. Significant changes in characteristics of solid shell formation like delay in initiation of solidification at the mold wall and formation of a gap in the re-solidified shell have been observed with change in stirrer position.  相似文献   

5.
A heat balance integral technique based on an enthalpy formulationof a metallurgical solidification problem is presented. Unlikethe majority of previous heat balance integral methods the newtechnique can analyse situations in which the phase change takesplace over a temperature range. This means that solidificationparameters of practical significance may be efficiently estimated.An application of the new technique is made to a problem ofbinary alloy solidification. The results obtained are comparedwith existing numerical models.  相似文献   

6.
The two-phase Stefan problems with phase formation and depletion are special cases of moving boundary problems with interest in science and industry. In this work, we study a solidification problem, introducing a front-fixing transformation. The resulting non-linear partial differential system involves singularities, both at the beginning of the freezing process and when the depletion is complete, that are treated with special attention in the numerical modelling. The problem is decomposed in three stages, in which implicit and explicit finite difference schemes are used. Numerical analysis reveals qualitative properties of the numerical solution spatial monotonicity of both solid and liquid temperatures and the evolution of the solidification front. Numerical experiments illustrate the behaviour of the temperatures profiles with time, as well as the dynamics of the solidification front.  相似文献   

7.
Melt conditioned direct-chill (MC-DC) casting is a novel technology which combines direct-chill (DC) casting with a high shear device directly immersed in the sump for in situ microstructural control. A numerical model of melt-conditioned direct-chill casting (MC-DC) is presented in this paper. This model is based on a finite volume continuum model using a moving reference frame (MRF) to enforce fluid rotation inside the rotor-stator region and is numerically stable within the range of processing conditions. The boundary conditions for the heat transfer include the effects of the hot-top, the aluminium mould, and the direct chill. This model is applied to the casting of two alloys: aluminium-based A6060 and magnesium-based AZ31. Results show that MC-DC casting modifies the temperature profile in the sump, resulting in a larger temperature gradient at the solidification front and a shorter local solidification time. The increased heat extraction rate due to forced convection in the sump is expected to contribute to a finer, more uniform grain structure in the as-cast billet.  相似文献   

8.
We investigate the relation between optimal control and controllability for a phase field system modeling the solidification process of pure materials in the case that only one control force is used. Such system is constituted of one energy balance equation, with a localized control associated to the density of heat sources and sinks to be determined, coupled with a phase field equation with the classical nonlinearity derived from the two-well potential. We prove that this system has a local controllability property and we establish that a sequence of solutions of certain optimal control problems converges to a solution of such controllability problem.  相似文献   

9.
The process of melting and solidification in metal casting is considered. The process is modeled by a three-dimensional two-phase initial-boundary value problem of the Stefan type. The mathematical formulation of the problem and its finite-difference approximation are given. A numerical algorithm is presented for solving the direct problem. The results are described and analyzed in detail. Primary attention is given to the evolution of the solidification front and to how it is affected by the parameters of the problem. Some of the results are illustrated by plots.  相似文献   

10.
With the use of additional boundary conditions in integral method of heat balance, we obtain analytic solution to nonstationary problem of heat conductivity for infinite plate. Relying on determination of a front of heat disturbance, we perform a division of heat conductivity process into two stages in time. The first stage comes to the end after the front of disturbance arrives the center of the plate. At the second stage the heat exchange occurs at the whole thickness of the plate, and we introduce an additional sought-for function which characterizes the temperature change in its center. Practically the assigned exactness of solutions at both stages is provided by introduction on boundaries of a domain and on the front of heat perturbation the additional boundary conditions. Their fulfillment is equivalent to the sought-for solution in differential equation therein. We show that with the increasing of number of approximations the accuracy of fulfillment of the equation increases. Note that the usage of an integral of heat balance allows the application of the given method for solving differential equations that do not admit a separation of variables (nonlinear, with variable physical properties etc.).  相似文献   

11.
We consider a heat conduction problem for an infinite plate with a mismatch between initial and boundary conditions. Using the method of integral relations, we obtain an approximate analytic solution to this problem by determining the temperature perturbation front. The solution has a simple form of an algebraic polynomial without special functions. It allows us to determine the temperature state of the plate in the full range of the Fourier numbers (0≤F<∞) and is especially effective for very small time intervals.  相似文献   

12.
In this paper, a fully analytical solution technique is established for the solution of unidirectional, conduction-dominated, alloy solidification problems. By devising appropriate averaging techniques for temperature and phase-fraction gradients, governing equations inside the mushy region are made inherently homogeneous. The above formulation enables one to obtain complete analytical solutions for solid, liquid and mushy regions, without resorting to any numerical iterative procedure. Due considerations are given to account for variable properties and different microscopic models of alloy solidification (namely, equilibrium and non-equilibrium models) in the two-phase domain. The results are tested for the problem of solidification of a NH4Cl–H2O solution, and compared with those from existing analytical models as well as with the corresponding results from a fully numerical simulation. The effects of different microscopic models on solidification behaviour are illustrated, and transients in temperature and heat flux distribution are also analysed. A good agreement between the present solutions and results from computational simulation is observed.  相似文献   

13.
The problem of the convergence of a spherical shock wave (SW) to the centre, taking into account the thermal conductivity of the gas in front of the SW, is considered within the limits of a proposed approximate model of a heat conducting gas with an infinitely high thermal conductivity and a small temperature gradient, such that the heat flux is finite in a small region in front of the converging SW. In this model, there is a phase transition in the surface of the SW from a perfect gas to another gas with different constant specific heat and the heat outflow. The gas is polytropic and perfect behind the SW. Constraints are derived which are imposed on the self-similarity indices as a function of the adiabatic exponents on the two sides of the SW. In front of the SW, the temperature and density increase without limit. In the general case, a set of self-similar solutions with two self-similarity indices exists but, in the case of strong SW close to the limiting compression, there are two solutions, each of which is completely determined by the motion of the spherical piston causing the self-similar convergence of the SW.  相似文献   

14.
In this study, we propose a mathematical model for U-shaped geothermal heat exchangers based on the unsteady Navier–Stokes problem. In the numerical solution of this problem, we divide the exchanger into two computational domains: rectilinear pipes where the temperature field is computed analytically, and a U-curved pipe where solutions for both the flow and heat exchange are calculated using a numerical procedure based on the Galerkin finite elements method. The results of some numerical simulations are provided and used to study the performance of geothermal exchangers by assessing the effective energy produced. We also present a validation analysis based on experimental measurements obtained from a real geothermal exchanger.  相似文献   

15.
An approximate analytical solution for the one-dimensional problem of heat transfer between an inert gas and a porous semi-infinite medium is presented. Perturbation methods based on Laplace transforms have been applied using the solid thermal conductivity as small parameter. The leading order approximation is the solution of Nusselt (or Schumann) problem. Such solution is corrected by means of an outer approximation. The boundary condition at the origin has been taking into account using an inner approximation for a boundary layer. The gas temperature presents a discontinuous front (due to the incompatibility between initial and boundary conditions) which propagates at constant velocity. The solid temperature at the front has been smoothed out using an internal layer asymptotic approximation. The good accuracy of the resulting asymptotic expansion shows its usefulness in several engineering problems such as heat transfer in porous media, in exhausted chemical reactions, mass transfer in packed beds, or in the analysis of capillary electrochromatography techniques.  相似文献   

16.
In this article we investigate the numerical oscillations encountered when approximating the solution to the hyperbolic heat conduction equation. We consider a benchmark problem and show that it is not well-posed, unless a jump condition is specified. The alternative is to “smooth” the jump which leads to a sharp crested wave front, but with no discontinuity. To track the wave front we split the problem into auxiliary problems and solve these using different methods. The resulting solution is oscillation-free.  相似文献   

17.
We consider a nonlinear heat conduction problem for a semi-infinitematerial x > 0, with phase-change temperature T1, an initialtemperature T2 (> T1) and a heat flux of the type q (t) =q0/t imposed on the fixed face x = 0. We assume that the volumetricheat capacity and the thermal conductivity are particular nonlinearfunctions of the temperature in both solid and liquid phases. We determine necessary and/or sufficient conditions on the parametersof the problem in order to obtain the existence of an explicitsolution for an instantaneous nonlinear twophase Stefan problem(solidification process).  相似文献   

18.
This paper presents a new nonlinear reaction–diffusion–convection system coupled with a system of ordinary differential equations that models a combustion front in a multilayer porous medium. The model includes heat transfer between the layers and heat loss to the external environment. A few assumptions are made to simplify the model, such as incompressibility; then, the unknowns are determined to be the temperature and fuel concentration in each layer. When the fuel concentration in each layer is a known function, we prove the existence and uniqueness of a classical solution for the initial and boundary value problem for the corresponding system. The proof uses a new approach for combustion problems in porous media. We construct monotone iterations of upper and lower solutions and prove that these iterations converge to a unique solution for the problem, first locally and then, in time, globally.  相似文献   

19.
We study the nonlinear axisymmetric problem of determining the temperature field near a spherical defect irradiated by a heat flux. The solution is constructed by the Fourier method using the Kirchhoff transform in a bipolar coordinate system. We carry out a numerical analysis of two special cases of boundary conditions. Translated fromMatematichni Metodi ta Fiziko-mekhanichni Polya, Vol. 39, No. 1, 1996, pp. 47–50.  相似文献   

20.
We study the stability of stationary transonic shock fronts under two-dimensional perturbation in gas dynamics. The motion of the gas is described by the full Euler system. The system is hyperbolic ahead of the shock front, and is a hyperbolic-elliptic composed system behind the shock front. The stability of the shock front and the downstream flow under two-dimensional perturbation of the upstream flow can be reduced to a free boundary value problem of the hyperbolic-elliptic composed system. We develop a method to deal with boundary value problems for such systems. The crucial point is to decompose the system to a canonical form, in which the hyperbolic part and the elliptic part are only weakly coupled in their coefficients. By several sophisticated iterative processes we establish the existence and uniqueness of the solution to the described free boundary value problem. Our result indicates the stability of the transonic shock front and the flow field behind the shock.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号