首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider a general nonlinear time-delay system with state-delays as control variables. The problem of determining optimal values for the state-delays to minimize overall system cost is a non-standard optimal control problem–called an optimal state-delay control problem–that cannot be solved using existing optimal control techniques. We show that this optimal control problem can be formulated as a nonlinear programming problem in which the cost function is an implicit function of the decision variables. We then develop an efficient numerical method for determining the cost function’s gradient. This method, which involves integrating an auxiliary impulsive system backwards in time, can be combined with any standard gradient-based optimization method to solve the optimal state-delay control problem effectively. We conclude the paper by discussing applications of our approach to parameter identification and delayed feedback control.  相似文献   

2.
3.
We address a rate control problem associated with a single server Markovian queueing system with customer abandonment in heavy traffic. The controller can choose a buffer size for the queueing system and also can dynamically control the service rate (equivalently the arrival rate) depending on the current state of the system. An infinite horizon cost minimization problem is considered here. The cost function includes a penalty for each rejected customer, a control cost related to the adjustment of the service rate and a penalty for each abandoning customer. We obtain an explicit optimal strategy for the limiting diffusion control problem (the Brownian control problem or BCP) which consists of a threshold-type optimal rejection process and a feedback-type optimal drift control. This solution is then used to construct an asymptotically optimal control policy, i.e. an optimal buffer size and an optimal service rate for the queueing system in heavy traffic. The properties of generalized regulator maps and weak convergence techniques are employed to prove the asymptotic optimality of this policy. In addition, we identify the parameter regimes where the infinite buffer size is optimal.  相似文献   

4.
We study parametric optimal control problems governed by a system of time-dependent partial differential equations (PDE) and subject to additional control and state constraints. An approach is presented to compute the optimal control functions and the so-called sensitivity differentials of the optimal solution with respect to perturbations. This information plays an important role in the analysis of optimal solutions as well as in real-time optimal control.The method of lines is used to transform the perturbed PDE system into a large system of ordinary differential equations. A subsequent discretization then transcribes parametric ODE optimal control problems into perturbed nonlinear programming problems (NLP), which can be solved efficiently by SQP methods.Second-order sufficient conditions can be checked numerically and we propose to apply an NLP-based approach for the robust computation of the sensitivity differentials of the optimal solutions with respect to the perturbation parameters. The numerical method is illustrated by the optimal control and sensitivity analysis of the Burgers equation.Communicated by H. J. Pesch  相似文献   

5.
In this paper we consider an optimal control system described byn-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem.We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.  相似文献   

6.
讨论了一类具终端观测且与年龄相关的非线性时变种群扩散系统的最优分布控制问题利用偏微控制理论和先验估计,证明了系统最优分布控制的存在性,得到了控制为最优的一阶必要条件,并进而讨论了系统的最优反馈控制问题.  相似文献   

7.
对拟线性椭圆变分不等式的障碍最优控制问题(即以障碍为控制变量)进行了研究.指标泛函为Lagrange型,其中含有控制变量二阶导数的p次幂,这使得最优性条件的推导颇为不易.对所考虑的问题给出了最优控制的存在性定理以及必要条件.  相似文献   

8.
The Pontryagin maximum principle is used to develop an original algorithm for finding an optimal control in a macroeconomic problem. Numerical results are presented for the optimal control and optimal trajectory of the development of a regional economic system. For an optimal control satisfying a certain constraint, an invariant of a macroeconomic system is derived.  相似文献   

9.
An optimal control problem for a system involving an interval parameter is considered. The concepts of a universal optimal state and a universal optimal control are introduced. The existence and uniqueness of a universal solution to the interval optimal control problem is proved, and an algorithm for its determination is presented. The interval optimal control problem for a system described by the boundary value problem for a second-order ordinary differential equation is solved as an example.  相似文献   

10.
杨露  高伟 《运筹与管理》2023,32(1):54-59
针对污染和种内关系均影响细菌种群扩散这一管理生态学问题,本文建立了基于非线性拟抛物方程的最优控制模型,将外界环境向细菌种群输入的毒素率作为控制变量,运用控制理论和方法探讨污染和种内关系双重影响下种群扩散系统的最优控制问题。利用Schauder不动点定理证明了该种群扩散系统的适定性;同时,通过建立新的Carleman型估计,给出了容许控制和最优控制的存在性。最后,通过数值算例分析了理论推导的结果,在算例中都找到一对时间最优控制,验证了种群扩散系统最优控制模型的有效性。该研究结果对现代传染病预防具有借鉴意义,也为有效控制瘟疫的爆发和流行提供理论参考。  相似文献   

11.
A maximum principle for the open-loop optimal control of a vibrating system relative to a given convex index of performance is investigated. Though maximum principles have been studied by many people (see, e.g., Refs. 1–5), the principle derived in this paper is of particular use for control problems involving mechanical structures. The state variable satisfies general initial conditions as well as a self-adjoint system of partial differential equations together with a homogeneous system of boundary conditions. The mass matrix is diagonal, constant, and singular, and the viscous damping matrix is diagonal. The maximum principle relates the optimal control with the solution of the homogeneous adjoint equation in which terminal conditions are prescribed in terms of the terminal values of the optimal state variable. An application of this theory to a structural vibrating system is given in a companion paper (Ref. 6).  相似文献   

12.
考虑一个带非局部低阶项非线性抛物型方程的时间最优控制问题.首先利用Schauder不动点定理证明了系统的适定性,然后利用Carleman不等式和Kakutani不动点定理证明了容许控制和最优控制的存在性,并且建立了时间最优控制的最大值原理.  相似文献   

13.
In this paper, we establish the existence of the optimal control for an optimal control problem where the state of the system is defined by a variational inequality problem with monotone type mappings. Moreover, as an application, we get several existence results of an optimal control for the optimal control problem where the system is defined by a quasilinear elliptic variational inequality problem with an obstacle.  相似文献   

14.
The problem of optimal control of a linear dynamical system under set-membership uncertainty is studied: it is required to steer the system to the terminal set with a guarantee and to maximize the guaranteed value of the quality criterion. The sets of the initial and current a preposteriori distributions of the states of the dynamical system are introduced; they are used to determine a positional solution of the problem of optimal a preposteriori3 observation with the help of inaccurate measurements of input and output signals of the observation object by two measuring devices. The obtained solution is used for determining a positional solution of the optimal control problem under uncertainty. Depending on the amount of the information used, optimal closable and closed output feedbacks are determined. The method of quasiimplementation of optimal feedbacks by means of optimal estimators and a regulator producing real-time control actions is described. The results are illustrated by examples.  相似文献   

15.
The problem of optimal control of a group of interconnected dynamical objects under uncertainty is considered. The cases are examined in which the centralized control of the group of objects is impossible due to delay in the channel for information exchange between the group members. Optimal self-control algorithms in real time for each dynamical object are proposed. Various types of a priori and current information about the behavior of the group members and about uncertainties in the system are examined. The proposed methods supplement the earlier developed optimal control methods for an individual dynamical system and the methods of decentralized optimal control of deterministic objects. The results are illustrated with examples.  相似文献   

16.
This paper studies a class of queueing control problems involving commonly used control mechanisms such as admission control and pricing. It is well established that in a number of these problems, there is an optimal policy that can be described by a few parameters. From a design point of view, it is useful to understand how such an optimal policy varies with changes in system parameters. We present a general framework to investigate the policy implications of the changes in system parameters by using event-based dynamic programming. In this framework, the control model is represented by a number of common operators, and the effect of system parameters on the structured optimal policy is analyzed for each individual operator. Whenever a queueing control problem can be modeled by these operators, the effects of system parameters on the optimal policy follow from this analysis.   相似文献   

17.
In recent times, optimal control theory for distributed parameter systems has been actively studied; among them, an important place is occupied by the class of systems describing oscillation processes. This work studies linear control distributed parameter systems of hyperbolic type. The minimization problem of a quadratic functional on the trajectories of the system is considered. By using the Fourier method, the problem is reduced to studying optimal solutions for a countable control system of ordinary differential equations. For Galerkin’s approximations of this system, it is proved that the optimal control is a chattering control, i.e., it has infinitely many switchings on a finite interval of time. The construction of the optimal synthesis uses the results of the theory of singular regimes and regimes with with more and more frequent switchings. __________ Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 19, Optimal Control, 2006.  相似文献   

18.
This paper is concerned with the analysis of a control problem related to the optimal management of a bioreactor. This real-world problem is formulated as a state-control constrained optimal control problem. We analyze the state system (a complex system of partial differential equations modelling the eutrophication processes for non-smooth velocities), and we prove that the control problem admits, at least, a solution. Finally, we present a detailed derivation of a first order optimality condition - involving a suitable adjoint system - in order to characterize these optimal solutions, and some computational results.  相似文献   

19.
The mathematical formulation and analysis of an optimal control problem associated with a viscous, incompressible, electrically conducting fluid in a bounded three-dimensional domain with fixed perfectly conducting boundaries is considered. The objective of control is the matching of the velocity and magnetic fields to given target fields; control is effected through distributed mechanical force and current controls. The existence of optimal solutions is shown, the Gâteaux differentiability for the magnetohydrodynamic system with respect to controls is proved, and the optimality system is obtained.  相似文献   

20.
An augmented Lagrangian SQP method is discussed for a class of nonlinear optimal control problems in Banach spaces with constraints on the control. The convergence of the method is investigated by its equivalence with the generalized Newton method for the optimality system of the augmented optimal control problem. The method is shown to be quadratically convergent, if the optimality system of the standard non-augmented SQP method is strongly regular in the sense of Robinson. This result is applied to a test problem for the heat equation with Stefan-Boltzmann boundary condition. The numerical tests confirm the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号