首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
二次分配问题是具有广泛应用背景的经典组合优化难题之一。本文在二次分配问题已有线性化模型的基础上,提出了一种新的基于流量的线性化模型。数值试验结果表明,新模型无论从时间上还是计算节点数都更具有优势。  相似文献   

2.
The pressure signal of a slurry column is easily obtained by using a pressure sensor, and a chaotic analysis method is used to analyze these signals in order to indicate the flow pattern of the slurry column. The slopes of the correlation integral curve indicate the flow pattern of the slurry column in various operating conditions. The flow pattern is dispersed bubble regime when the superficial velocity is low and the correlation integral curve has two slopes. The flow pattern changes into transition regime with increase in the superficial velocity, the correlation integral curve has only one slope. In the case of the flow pattern becoming a slugging regime, there are several slopes to the correlation integral curve. So it is convenient to find out the flow pattern in the slurry column by solving the slopes of the correlation integral of the pressure signal. The maximum Lyapunov exponent represents the chaos in a slurry column with various solid holdups. The maximum Lyapunov exponent is nearly similar at different heights when the flow patterns are dispersed bubble regime and slugging regime, but the maximum Lyapunov exponent at the axial height is quite different when the flow pattern is transition regime.  相似文献   

3.
Pulsatile blood flows in curved atherosclerotic arteries are studied by com- puter simulations.Computations are carried out with various values of physiological parameters to examine the effects of flow parameters on the disturbed flow patterns downstream of a curved artery with a stenosis at the inner wall.The numerical re- suits indicate a strong dependence of flow pattern on the blood viscosity and inlet flow rate,while the influence of the inlet flow profile to the flow pattem in downstream is negligible.  相似文献   

4.
Any weak, steady vortical flow is a solution to leading order of the inviscid fluid equations with a free surface, so long as this flow has horizontal streamlines coinciding with the undisturbed free surface. This work considers the propagation of irrotational surface gravity waves when such a vortical flow is present. In particular, when the vortical flow and the irrotational surface waves are both periodic, resonant interactions can occur between the various components of the flow. The periodic vortical component of the flow is proposed as a model for more complicated vortical flows that would affect surface waves in the ocean, such as the turbulence in the wake of a ship. These resonant interactions are studied in two dimensions, both in the limit of deep water (Part I) and shallow water (Part II). For deep water, the resonant set of surface waves is governed by “triad-like” ordinary differential equations for the wave amplitudes, whose coefficients depend on the underlying rotational flow. These coefficients are calculated explicitly and the stability of various configurations of waves is discussed. The effect of three dimensionality is also briefly mentioned.  相似文献   

5.
应隆安  魏万明 《计算数学》1993,15(2):129-142
[1]中讨论了无界区域上轴对称Stokes绕流的无限元方法,我们利用转移矩阵X以及组合刚度矩阵K_z将问题归结为一个有限阶代数方程组。[1]又给出了两种计算K_z的迭代方法,并证明了迭代方法的收敛性。最后证明了无限元解收敛于精确解,估计了误差的阶。这个方法的优点是:无穷远边界条件自然,计算规模小,边界形状不受限制,程序通用,并且理论基础比较完整。 本文是[1]的继续。我们将迭代格式作了一些简化,使之更便于计算;并且利用这种  相似文献   

6.
A fifth-order accurate compact difference scheme was used to compute the flow over an axisymmetric afterbody with jet exhaust. The solution was based on the mass-averaged Navier-Stokes equations combined with a two-parameter differential model of turbulence. The computations were performed on a specially generated mesh such that the flow in the exterior and interior of the nozzle could be described simultaneously. Numerical results are presented for various external flow conditions and various chamber pressures.  相似文献   

7.
Any weak, steady vortical flow is a solution, to leading order, of the inviscid fluid equations with a free surface, so long as this flow has horizontal streamlines coinciding with the undisturbed free surface. This work considers the propagation of long irrotational surface gravity waves when such a vortical flow is present. In particular, when the vortical flow and the irrotational surface waves are both periodic and have comparable length scales, resonant interactions can occur between the various components of the flow. The interaction is described by two coupled Korteweg-de Vries equations and a two-dimensional streamfunction equation.  相似文献   

8.
1. IntroductionCompared with the widely used shock capturing methods for the compressible flows, theshock fitting methods have the main advantage of accuracy. The shock fitting methods areusually very accurate wherever it can be applied. Several kinds of shock fitting methods havebeen developed il1 the last tl1ree decades. Glimrn and his coworkers have worked extensively onthe front tracking methods and applied them to many complicated problems with shocks andother types of singularities [1]-[…  相似文献   

9.
In the present paper, we study the boundary layer flow of viscous incompressible fluid over an inclined stretching sheet with body force and heat transfer. Considering the stream function, we convert the boundary layer equation into nonlinear third-order ordinary differential equation together with appropriate boundary conditions in an infinite domain. The nonlinear boundary value problem has been linearized by using the quasilinearization technique. Then, we develop a nonpolynomial spline method, which is used to solve the flow problem. The convergence analysis of the method is also discussed. We study the velocity function for different angles of inclination and Froude number with the help of various graphs and tables. Then using these in heat convection flow, we obtain the expression for temperature field. Skin friction is also calculated. The various results have been given in tables. At last, we calculated the Nusselt number.  相似文献   

10.
In the present study, the turbulent gas flow dynamics in a two-dimensional convergent–divergent rocket nozzle is numerically predicted and the associated physical phenomena are investigated for various operating conditions. The nozzle is assumed to have impermeable and adiabatic walls with a flow straightener in the upstream side and is connected to a plenum surrounding the nozzle geometry and extended in the downstream direction. In this integrated component model, the inlet flow is assumed a two-dimensional, steady, compressible, turbulent and subsonic. The physics based mathematical model of the considered flow consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The system of the governing equations with turbulent effects is solved numerically using different turbulence models to demonstrate their numerical accuracy in predicting the characteristics of turbulent gas flow in such complex geometry. The performance of the different turbulence models adopted has been assessed by comparing the obtained results of the static wall pressure and the shock position with the available experimental and numerical data. The dimensionless shear stress at the nozzle wall and the separation point are also computed and the flow field is illustrated. The various implemented turbulence models have shown different behavior of the turbulent characteristics. However, the shear-stress transport (SST) kω model exhibits the best overall agreement with the experimental measurements. In general, the proposed numerical procedure applied in the present paper shows good capability in predicting the physical phenomena and the flow characteristics encountered in such kinds of complex turbulent flow.  相似文献   

11.
In this paper, we study the unsteady motion of an inhomogeneous incompressible viscous fluid, where the viscosity varies spatially according to various models. We study the Stokes-type flow for these types of fluids where in the first case the flow between two parallel plates is examined with one of the plates oscillating and in the second case when the flow is caused by a pulsatile pressure gradient. A general argument establishes the existence of oscillatory solutions to our problem. Exact solutions are obtained in terms of some special functions and comparisons are made with the cases of constant viscosity and the slow flow regimes.  相似文献   

12.
A vortex method is suggested for computing two-dimensional inviscid incompressible flows in a closed domain with a possible flow through it. An algorithm for searching for stable steady vortex configurations is described. The method developed is used to study the dynamics of the Chaplygin-Lamb dipole in a rectangular channel in various flow regimes.  相似文献   

13.
The flow of an incompressible micropolar fluid over a suddenly moved plate is considered under isothermal conditions. State-space technique is used to find the solution of the problem. Inversion of Laplace transform is carried out using a numerical approach. The variation of velocity and microrotation fields is studied with respect to various flow parameters and the results are presented through graphs.  相似文献   

14.
Both numerical and asymptotic analyses are performed to study the similarity solutions of three‐dimensional boundary‐layer viscous stagnation point flow in the presence of a uniform magnetic field. The three‐dimensional boundary‐layer is analyzed in a non‐axisymmetric stagnation point flow, in which the flow is developed because of influence of both applied magnetic field and external mainstream flow. Two approaches for the governing equations are employed: the Keller‐box numerical simulations solving full nonlinear coupled system and a corresponding linearized system that is obtained under a far‐field behavior and in the limit of large shear‐to‐strain‐rate parameter (λ). From these two approaches, the flow phenomena reveals a rich structure of new family of solutions for various values of the magnetic number and λ. The various results for the wall stresses and the displacement thicknesses are presented along with some velocity profiles in both directions. The analysis discovered that the flow separation occurs in the secondary flow direction in the absence of magnetic field, and the flow separation disappears when the applied magnetic field is increased. The flow field is divided into a near‐field (due to viscous forces) and far‐field (due to mainstream flows), and the velocity profiles form because of an interaction between two regions. The magnetic field plays an important role in reducing the thickness of the boundary‐layer. A physical explanation for all observed phenomena is discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the author has considered the hyperbolic Khler-Ricci flow introduced by Kong and Liu, that is, the hyperbolic version of the famous Khler-Ricci flow. The author has explained the derivation of the equation and calculated the evolutions of various quantities associated with the equation including the curvatures. Particularly on Calabi-Yau manifolds, the equation can be simplifled to a scalar hyperbolic Monge-Ampère equation which is the hyperbolic version of the corresponding one in Khler-Ricci flow.  相似文献   

16.
The use of a pulsating-type hydrodynamic bench apparatus for studying the functioning of heart-valve prostheses at various values of the volume flow rate is described. A complex of hydrodynamic characteristics is developed and the dependence of these characteristics on the minute volume, flow regime, and the ratio of the linear dimensions of the prosthesis is examined for various types of artificial heart valves. The operation of the heart-value prostheses under different hydrodynamic conditions is analyzed, and the design defects of certain types of prostheses are noted.  相似文献   

17.
Molecular flow past an inclined plate is simulated on a scientific personal computer. Wake flow and turbulent effects are described and discussed for various fluid speeds.  相似文献   

18.
对于正交异性材料屈服与流动的探讨   总被引:11,自引:2,他引:9  
假定正交异性材料的屈服准则与各向同性材料的Huber-Mises准则同构,提出了无量纲应力屈服准则,进而推导了与之相关的塑性流动规则.用不同的简单应力状态下的应力-应变试验曲线,可以得到不同的广义等效应力-应变关系.  相似文献   

19.
During large diameter Czochralski silicon growth, heat zone and argon flow influence the formation of defects in silicon crystal by changing the distribution of temperature. Different silicon crystals with various density of grown-in defects were grown by replacing the popular heater with the composite heater and changing the popular argon flow into a controlled flow. The experimental results have been explained well by the numeric simulation of argon flow.  相似文献   

20.
In this paper, we introduce and study the conformal mean curvature flow of submanifolds of higher codimension in the Euclidean space R~n. This kind of flow is a special case of a general modified mean curvature flow which is of various origination. As the main result, we prove a blow-up theorem concluding that, under the conformal mean curvature flow in R~n, the maximum of the square norm of the second fundamental form of any compact submanifold tends to infinity in finite time. Furthermore, we also prove that the external conformal forced mean curvature flow of a compact submanifold in R~n with the same pinched condition as Andrews-Baker's will be convergent to a round point in finite time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号